Statics and dynamics of an electrically driven mesh nanoplate
- Autores: Krylova E.Y.1, Baryshev D.A.1, Tribis I.A.1, Andreichenko D.K.1, Papkova I.V.1,2
-
Afiliações:
- Saratov State University
- Yuri Gagarin State Technical University of Saratov
- Edição: Volume 25, Nº 3 (2025)
- Páginas: 366-379
- Seção: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/352467
- DOI: https://doi.org/10.18500/1816-9791-2025-25-3-366-379
- EDN: https://elibrary.ru/HSKMLC
- ID: 352467
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Ekaterina Krylova
Saratov State University
ORCID ID: 0000-0002-7593-0320
Código SPIN: 8951-1463
Scopus Author ID: 56288336500
Researcher ID: M-7993-2016
Astrahanskaya str., 83, Saratov, Russia
Dmitriy Baryshev
Saratov State University
Código SPIN: 4533-7007
Astrahanskaya str., 83, Saratov, Russia
Inna Tribis
Saratov State University
Código SPIN: 9971-3314
Astrahanskaya str., 83, Saratov, Russia
Dmitry Andreichenko
Saratov State University
ORCID ID: 0000-0003-0525-984X
Código SPIN: 7323-1488
Scopus Author ID: 6506669322
Astrahanskaya str., 83, Saratov, Russia
Irina Papkova
Saratov State University; Yuri Gagarin State Technical University of Saratov
ORCID ID: 0000-0003-4062-1437
Código SPIN: 2999-6160
Astrahanskaya str., 83, Saratov, Russia
Bibliografia
- Nazaria A., Faezb R., Shamlooa H. Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect // Superlattices and Microstructures. 2016. Vol. 97. P. 28–45. DOI: https://doi.org/10.1016/j.spmi.2016.06.008
- Wong K. L., Chuan M. W., Hamzah A., Rusli S., Alias N. E., Sultan S. M., Lim C. S., Tan M. L. P. Performance metrics of current transport in pristine graphene nanoribbon field-effect transistors using recursive non-equilibrium Green’s function approach // Superlattices and Microstructures. 2020. Vol. 145. Art. 106624. DOI: https://doi.org/10.1016/j.spmi.2020.106624
- Chuan M. W., Riyadi M. A., Hamzah A., Alias N. E., Sultan S. M., Lim C. S., Tan M. L. P. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors // Results in Physics. 2021. Vol. 29. Art. 104714. DOI: https://doi.org/10.1016/j.rinp.2021.104714
- Liu Y., Li C., Shi X., Wu Z., Fan S., Wan Z., Han S. High-sensitivity graphene MOEMS resonant pressure sensor // ACS Applied Materials & Interfaces. 2023. Vol. 15, iss. 25. P. 30479–30485. DOI: https://doi.org/10.1021/acsami.3c04520
- Chen Y., Liu S., Hong G., Zou M., Liu B., Luo J., Wang Y. Nano-optomechanical resonators for sensitive pressure sensing // ACS Applied Materials & Interfaces. 2022. Vol. 14, iss. 34. P. 39211-39219. DOI: https://doi.org/10.1021/acsami.2c09865
- Shin D. H., Kim H., Kim S. H., Cheong H., Steeneken P. G., Joo C., Lee S. W. Graphene nanoelectromechanical mass sensor with high resolution at room temperature // iScience. 2023. Vol. 26, iss. 2. Art. 105958. DOI: https://doi.org/10.1016/j.isci.2023.105958
- Han G. R., Jiang J. W. Edge–mode–based graphene nanomechanical resonators for high-sensitivity mass sensor // Europhysics Letters. 2018. Vol. 123, iss. 3. Art. 36002. DOI: https://doi.org/10.1209/0295-5075/123/36002
- Еремеев В. А., Зубов Л. М. Механика упругих оболочек. Москва : Наука, 2008. 286 с.
- Altenbach H., Eremeyev V. A. On the linear theory of micropolar plates // ZAMM– Journal of Applied Mathematics and Mechanics. 2009. Vol. 89, iss. 4. P. 242–256. DOI: https://doi.org/10.1002/zamm.200800207
- Norouzzadeh A., Ansari R., Darvizeh M. Isogeometric dynamic analysis of shells based on the nonlinear micropolar theory // International Journal of Non-Linear Mechanics. 2021. Vol. 135. Art. 103750. DOI: https://doi.org/10.1016/j.ijnonlinmec.2021.103750
- Carrera E., Zozulya V. V. Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory // Mechanics of Advanced Materials and Structures. 2022. Vol. 29, iss. 6. P. 773–795. DOI: https://doi.org/10.1080/15376494.2020.1793241
- Sargsyan A., Sargsyan S. Geometrically nonlinear models of static deformation of micropolar elastic thin plates and shallow shells // ZAMM – Journal of Applied Mathematics and Mechanics. 2021. Vol. 101, iss. 5. Art. e202000148. DOI: https://doi.org/10.1002/zamm.202000148
- Zubov L. M., Kolesnikov A. M., Rudenko O. V. Exact solutions of nonlinear micropolar elastic theory for compressible solids // Recent Developments in the Theory of Shells / eds. H. Altenbach, J. Chróścielewski, V. Eremeyev, K. Wiśniewski. Cham : Springer, 2019. P. 771–798. (Advanced Structured Materials, vol. 110). DOI: https://doi.org/10.1007/978-3-030-17747-8_37
- Varygina M. Numerical modeling of elastic waves in micropolar plates and shells taking into account inertial characteristics // Continuum Mechanics and Thermodynamics. 2020. Vol. 32, iss. 3. P. 761-774. DOI: https://doi.org/10.1007/s00161-018-0725-8
- Крылова Е. Ю., Папкова И. В., Крысько В. А. Математическое моделирование сложных колебаний гибких микрополярных сетчатых цилиндрических панелей // Известия вузов. Физика. 2019. Т. 62, вып. 9 (741). С. 101–105. DOI: https://doi.org/10.17223/00213411/62/9/101
- Krysko V. A., Awrejcewicz J., Papkova I. V., Krysko V. A. Chaotic vibrations of size-dependent flexible rectangular plates // Chaos. 2021. Vol. 31, iss. 4. Art. 043119. DOI: https://doi.org/10.1063/5.0044630
- Mazur O., Kurpa L., Awrejcewicz J. Vibrations and buckling of orthotropic small-scale plates with complex shape based on modified couple stress theory // ZAMM – Journal of Applied Mathematics and Mechanics. 2020. Vol. 100, iss. 11. Art. e202000009. DOI: https://doi.org/10.1002/zamm.202000009
- Саркисян С. О. Модель тонких оболочек в моментной теории упругости с деформационной концепцией «Сдвиг плюс поворот» // Физическая мезомеханика. 2020. Т. 23, вып. 4. С. 13–19. DOI: https://doi.org/10.24411/1683-805X-2020-14002, EDN: USMFGI
- Саркисян С. О., Фарманян А. Ж. Термоупругость микрополярных ортотропных тонких оболочек // Вестник Пермского национального исследовательского политехнического университета. Механика. 2013. № 3. С. 222–237. DOI: https://doi.org/10.15593/perm.mech/2013.3.222-237, EDN: RDKNJH
- Partap G., Chugh N. Thermoelastic damping in microstretch thermoelastic rectangular plate // Microsystem Technologies. 2017. Vol. 23, iss. 12. P. 5875–5886. DOI: https://doi.org/10.1007/s00542-017-3350-8
- Ghayesh M. H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators // Mechanical Systems and Signal Processing. 2018. Vol. 109. P. 220–234. DOI: https://doi.org/10.1016/j.ymssp.2017.11.043
- Saghir S., Younis M. I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation // Acta Mechanica. 2018. Vol. 229, iss. 7. P. 2909–2922. DOI: https://doi.org/10.1007/s00707-018-2141-3
- Лукин А. В., Попов И. А., Скубов Д. Ю. Нелинейнаядинамикаиустойчивость элементов микросистемной техники // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17, вып. 6. С. 1107–1115. DOI: https://doi.org/10.17586/2226-1494-2017-17-6-1107-1115
- Karami M., Kazemi A., Vatankhah R., Khosravifard A. Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate // Journal of Vibration and Control. 2020. Vol. 27, iss. 11–12. P. 1353–1369. DOI: https://doi.org/10.1177/1077546320940916
- Karimipour I., Beni Y. T., Akbarzadeh A. H. Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates // Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 78. Art. 104856. DOI: https://doi.org/10.1016/j.cnsns.2019.104856
- Karimipour I., Beni Y. T., Zeighampour H. Vibration and dynamic behavior of electrostatic size-dependent micro-plates // Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020. Vol. 42. Art. 407. DOI: https://doi.org/10.1007/s40430-020-02490-4
- Sajadi B., Alijani F., Goosen H., van Keulen F. Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates // Nonlinear Dynamics. 2018. Vol. 91. P. 2157–2170. DOI: https://doi.org/10.1007/s11071-017-4007-y
- Farokhi H., Ghayesh M. H. Nonlinear mechanics of electrically actuated microplates // International Journal of Engineering Science. 2018. Vol. 123. P. 197–213. DOI: https://doi.org/10.1016/j.ijengsci.2017.08.017
- dell’Isola F., Steigman D. A two-dimensional gradient-elasticity theory for woven fabrics // Journal of Elasticity. 2015. Vol. 118, iss. 1. P. 113–125. DOI: https://doi.org/10.1007/s10659-014-9478-1
- Eremeyev V. A. A nonlinear model of a mesh shell // Mechanics of Solids. 2018. Vol. 53, iss. 4. P. 464–469. DOI: https://doi.org/10.3103/S002565441804012
- Крылова Е. Ю., Папкова И. В., Салтыкова О. А., Крысько В. А. Особенности сложных колебаний гибких микрополярных сетчатых панелей // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2021. Т. 21, вып. 1. С. 48–59. DOI: https://doi.org/10.18500/1816-9791-2021-21-1-48-59, EDN: MYYGLY
- Крылова Е. Ю., Папкова И. В., Яковлева Т. В., Крысько В. А. Теория колебаний углеродных нанотрубок как гибких микрополярных сетчатых цилиндрических оболочек с учетом сдвига // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2019. Т. 19, вып. 3. С. 305–316. DOI: https://doi.org/10.18500/1816-9791-2019-19-3-305-316, EDN: PFEDII
- Kármán Th. V. Festigkeitsprobleme im Maschinenbau // Mechanik / eds. F. Klein, C. Müller. Wiesbaden : Vieweg+Teubner Verlag, 1907. P. 311–385. DOI: https://doi.org/10.1007/978-3-663-16028-1_5
- Yang F., Chong A. C. M., Lam D. C. C., Tong P. Couple stress based strain gradient theory for elasticity // International Journal of Solids and Structures. 2002. Vol. 39, iss. 10. P. 2731–2743. DOI: https://doi.org/10.1016/S0020-7683(02)00152-X
- Пшеничнов Г. И. Теория тонких упругих сетчатых оболочек и пластинок. Москва : Наука, 1982. 352 с.
- Hamilton W. R. On conjugate functions, or algebraic couples // Report of the Fourth Meeting of the British Association for the Advancement of Science; held at Edinburgh in 1834. London : J. Murray, 1835. Vol. 4. P. 519–523.
- Krysko V. A., Awrejcewicz J., Komarov S. A. Nonlinear deformations of spherical panels subjected to transversal load action // Computer Methods in Applied Mechanics and Engineering. 2005. Vol. 194, iss. 27–29. P. 3108 3126. DOI: https://doi.org/10.1016/j.cma.2004.08.005
- Français O., Dufour I. Normalized abacus for the global behavior of diaphragm: Pneumatic, electrostatic, piezoelectric or electromagnetic actuation // Journal of Modeling and Simulation of Microsystems. 1999. Vol. 1, iss. 2. P. 149–160.
Arquivos suplementares



