Free vibration frequencies of prismatic thin shells
- Autores: Dzebisashvili G.T.1, Smirnov A.L.1, Filippov S.B.1
-
Afiliações:
- St. Petersburg University
- Edição: Volume 24, Nº 1 (2024)
- Páginas: 49-56
- Seção: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353473
- DOI: https://doi.org/10.18500/1816-9791-2024-24-1-49-56
- EDN: https://elibrary.ru/BFHZFQ
- ID: 353473
Citar
Texto integral
Resumo
The paper examines the natural frequencies of prismatic thin shells, the cross-section of which is the regular polygon. Spectra of free vibration frequencies of such shells are analyzed as the number of cross-section sides increases, provided that the perimeter is preserved. The relation between fundamental frequencies of the prismatic shells with the regular polygonal cross-section and a circular cylindrical shell is discussed. For a small and large number of polygon sides analytical and asymptotic solutions are compared with numerical solutions obtained by the finite element method (COMSOL). The convergence of the numerical method is studied for the prismatic shell with a large number of facets.
Palavras-chave
Sobre autores
Georgii Dzebisashvili
St. Petersburg University
Email: d-g-t@bk.ru
ORCID ID: 0000-0001-8342-3065
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Andrei Smirnov
St. Petersburg University
Email: a.l.smirnov@spbu.ru
ORCID ID: 0000-0002-1526-2869
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Sergei Filippov
St. Petersburg University
Autor responsável pela correspondência
Email: s_b_filippov@mail.ru
ORCID ID: 0000-0002-1312-5705
Scopus Author ID: 7006004880
Russia, 199034, St. Petersburg, Universitetskaya nab., 7-9
Bibliografia
- Filippov S. B., Haseganu E. M., Smirnov A. L. Free vibrations of square elastic tubes with a free end // Mechanics Research Communications. 2000. Vol. 27, iss. 4. P. 457–464. https://doi.org/10.1016/S0093-6413(00)00118-X, EDN: LGGAGP
- Дзебисашвили Г. Т. Колебания цилиндрических оболочек с квадратным поперечным сечением // Труды семинара «Компьютерные методы в механике сплошной среды» 2017–2018 г. Санкт-Петербург : Изд-во Санкт-Петербургского гос. ун-та, 2019. С. 13–29. EDN: VMRBFC
- Амосов А. С. Колебания тонкой цилиндрической оболочки с прямоугольным сечением // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2004. Вып. 1. С. 67–72. EDN: RTSPCN
- Chen Y., Jin G., Liu Z. Free vibration of a thin shell structure of rectangular cross-section // Key Engineering Materials. 2011. Vol. 486. P. 107–110. https://doi.org/10.4028/www.scientific.net/KEM.486.107
- Dzebisashvili G. T., Filippov S. B. Vibrations of cylindrical shells with rectangular cross-section // Journal of Physics: Conference Series. 2020. Vol. 1479. URL: https://iopscience.iop.org/article/10.1088/1742-6596/1479/1/012129/pdf (дата обращения: 26.02.2021).
- Goncalves R., Camotim D. The vibration behaviour of thin-walled regular polygonal tubes // Thin-Walled Structures. 2014. Vol. 84. P. 177–188. https://doi.org/10.1016/j.tws.2014.06.011
- Krajcinovic D. Vibrations of prismatic shells with hexagonal cross section // Nuclear Engineering and Design. 1972. Vol. 22, iss. 1. P. 51–62. https://doi.org/10.1016/0029-5493(72)90061-1
- Borkovic A., Kovacevic S., Milasinovic D. D., Radenkovic G., Mijatovic O., Golubovic-Bugarski V. Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method // Thin-Walled Structures. 2017. Vol. 117. P. 63–88. https://doi.org/10.1016/j.tws.2017.03.033
- Liang S., Chen H. L., Liang T. X. An analytical investigation of free vibration for a thin-walled regular polygonal prismatic shell with simply supported odd/even number of sides // Journal of Sound and Vibration. 2005. Vol. 284, iss. 1–2. P. 520–530. https://doi.org/10.1016/j.jsv.2004.08.011
- Leissa A. W. Vibration of Plates. Washington : US Government Printing Office, 1969. 353 p.
- Гольденвейзер А. Л., Лидский В. Б., Товстик П. Е. Свободные колебания тонких упругих оболочек. Москва : Наука, 1979. 384 c.
Arquivos suplementares


