Numerical solution of first-order exact differential equations by the integrating factor method
- 作者: Sevastianov L.A.1,2, Lovetskiy K.P.1, Kulyabov D.S.1, Sergeev S.V.1
-
隶属关系:
- Peoples’ Friendship University of Russia named after Patrice Lumumba
- Joint Institute for Nuclear Research
- 期: 卷 24, 编号 4 (2024)
- 页面: 512-525
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1816-9791/article/view/353450
- DOI: https://doi.org/10.18500/1816-9791-2024-24-4-512-525
- EDN: https://elibrary.ru/ILSNIX
- ID: 353450
如何引用文章
全文:
详细
A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.
作者简介
Leonid Sevastianov
Peoples’ Friendship University of Russia named after Patrice Lumumba; Joint Institute for Nuclear Research
Email: sevastianov-la@pfur.ru
ORCID iD: 0000-0002-1856-4643
SPIN 代码: 6950-9879
6, Miklukho-Maklaya St., Moscow, 117198, Russia
Konstantin Lovetskiy
Peoples’ Friendship University of Russia named after Patrice Lumumba
Email: lovetskiy-kp@rudn.ru
ORCID iD: 0000-0002-3645-1060
SPIN 代码: 6665-7150
Scopus 作者 ID: 18634692900
6, Miklukho-Maklaya St., Moscow, 117198, Russia
Dmitry Kulyabov
Peoples’ Friendship University of Russia named after Patrice Lumumba
Email: kulyabovds@rudn.ru
ORCID iD: 0000-0002-0877-7063
SPIN 代码: 7219-1902
Scopus 作者 ID: 35194130800
Researcher ID: I-3183-2013
6, Miklukho-Maklaya St., Moscow, 117198, Russia
Stepan Sergeev
Peoples’ Friendship University of Russia named after Patrice Lumumba
编辑信件的主要联系方式.
Email: 1032202195@rudn.ru
ORCID iD: 0009-0004-1159-4745
6, Miklukho-Maklaya St., Moscow, 117198, Russia
参考
- Polyanin A. D., Zaitsev V. F. Handbook of ordinary differential equations: Exact solutions, methods, and problems. New York, Chapman Hall/CRC, 2017. 1496 p. https://doi.org/10.1201/9781315117638
- Boas M. L. Mathematical methods in the physical sciences. John Wiley & Sons, Inc., 2005. 864 p.
- Soifer V. A., Kotlar V., Doskolovich L. Iteractive methods for diffractive optical elements computation. London, CRC Press, 2014. 244 p. https://doi.org/10.1201/9781482272918
- Doskolovich L. L., Kharitonov S. I., Petrova O. I., Soifer V. A. A gradient method for design of multiorder varied-depth binary diffraction gratings. Optics and Lasers in Engineering, 1998, vol. 29, iss. 3–4, pp. 249–259. https://doi.org/10.1016/S0143-8166(97)00113-9
- Doskolovich L. L., Mingazov A. A., Bykov D. A., Andreev E. S., Bezus E. A. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Optics Express, 2017, vol. 25, iss. 22, pp. 26378–26392. https://doi.org/10.1364/OE.25.026378
- Doskolovich L. L., Bykov D. A., Andreev E. S., Bezus E. A., Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Optics Express, 2018, vol. 26, iss. 19, pp. 24602–24613. https://doi.org/10.1364/OE.26.024602
- Wu R., Xu L., Liu P., Zhang Y., Zheng Z., Li H., Liu X. Freeform illumination design: A nonlinear boundary problem for the elliptic Monge–Ampere equation. Optics Letters, 2013, vol. 38, iss. 2, pp. 229–231. https://doi.org/10.1364/OL.38.000229
- Wu R., Benitez P., Zhang Y., Minano J. C. Influence of the characteristics of a light source and target on the Monge–Ampere equation method in freeform optics design. Optics Letters, 2005, vol. 39, iss. 3, pp. 634–637. https://doi.org/10.1364/OL.39.000634
- Doskolovich L. L., Kazanskiy N. L., Kharitonov S. I., Perlo P., Bernard S. Designing reflectors to generate a line-shaped directivity diagram. Journal of Modern Optics, 2005, vol. 52, iss. 11, pp. 1529–1536. https://doi.org/10.1080/09500340500058082
- Doskolovich L. L., Kazanskiy N. L., Bernard S. Designing a mirror to form a line-shaped directivity diagram. Journal of Modern Optics, 2007, vol. 54, iss. 4, pp. 589–597. https://doi.org/10.1080/0950034060102186
- Doskolovich L. L., Andreev E. S., Moiseev M. A. On optical surface reconstruction from a prescribed source-target mapping. Computer Optics, 2016, vol. 40, iss. 3, pp. 338–345 (in Russian). https://doi.org/10.18287/2412-6179-2016-40-3-338-345
- Doskolovich L. L., Andreev E. S., Kharitonov S. I., Kazansky N. L. Reconstruction of an optical surface from a given source-target map. Journal of the Optical Society of America A, 2016, vol. 33, iss. 8, pp. 1504–1508. https://doi.org/10.1364/JOSAA.33.001504
- Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S. Multistage collocation pseudo-spectral method for the solution of the first order linear ODE. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). Samara, Russian Federation, Institute of Electrical Electronics Engineers Inc., 2022, pp. 1–6. https://doi.org/10.1109/ITNT55410.2022.9848731
- Lovetskiy K. P., Kulyabov D. S., Hissein A. W. Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order. Discrete and Continuous Models and Applied Computational Science, 2022, vol. 30, iss. 2, pp. 127–138. https://doi.org/10.22363/2658-4670-2022-30-2-127-138
- Stewart G. W. Afternotes on numerical analysis. Philadelphia, Pa, Society for Industrial and Applied Mathematics, 1996. 200 p. https://doi.org/10.1137/1.9781611971491
- Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials. Numerical Algorithms, 2020, vol. 83, pp. 1–31. https://doi.org/10.1007/s11075-019-00668-z
- Fornberg B. A practical guide to pseudospectral methods. Cambridge University Press, 1996. 230 p. https://doi.org/10.1017/CBO9780511626357
- Tenenbaum M., Pollard H. Ordinary differential equations. Dover, New York, Dover Publications, Inc., 1963. 818 p.
- Mendes N., Chhay M., Berger J., Dutykh D. Spectral methods. In: Mendes N., Chhay M., Berger J., Dutykh D. Numerical methods for diffusion phenomena in building physics. A practical introduction. Cham, Springer, 2019, pp. 167–209. https://doi.org/10.1007/978-3-030-31574-0_8
补充文件


