Численное решение дифференциальных уравнений первого порядка в полных дифференциалах методом интегрирующего множителя

Обложка

Цитировать

Полный текст

Аннотация

Предложен численный алгоритм решения дифференциальных уравнений в полных дифференциалах, основанный как на эффективном вычислении интегрирующих множителей, так и на «новом» численном методе интегрирования функций. Устойчивое определение интегрирующих множителей обеспечивается за счет использования чебышевской интерполяции искомых функций и проведения расчетов на сетках Гаусса – Лобатто, обеспечивающих дискретную ортогональность чебышевских матриц. После чего процедура интегрирования осуществляется с помощью чебышевских матриц интегрирования. Интегрирующий множитель и итоговый потенциал решения обыкновенного дифференциального уравнения представляются в виде интерполяционных полиномов, зависящих от ограниченного количества численно восстанавливаемых коэффициентов разложения.

Об авторах

Леонид Антонович Севастьянов

Российский университет дружбы народов имени Патриса Лумумбы; Объединенный институт ядерных исследований

Email: sevastianov-la@pfur.ru
ORCID iD: 0000-0002-1856-4643
SPIN-код: 6950-9879
Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Константин Петрович Ловецкий

Российский университет дружбы народов имени Патриса Лумумбы

Email: lovetskiy-kp@rudn.ru
ORCID iD: 0000-0002-3645-1060
SPIN-код: 6665-7150
Scopus Author ID: 18634692900
Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Дмитрий Сергеевич Кулябов

Российский университет дружбы народов имени Патриса Лумумбы

Email: kulyabovds@rudn.ru
ORCID iD: 0000-0002-0877-7063
SPIN-код: 7219-1902
Scopus Author ID: 35194130800
ResearcherId: I-3183-2013
Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Степан Викторович Сергеев

Российский университет дружбы народов имени Патриса Лумумбы

Автор, ответственный за переписку.
Email: 1032202195@rudn.ru
ORCID iD: 0009-0004-1159-4745
Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Polyanin A. D., Zaitsev V. F. Handbook of ordinary differential equations: Exact solutions, methods, and problems. New York, Chapman Hall/CRC, 2017. 1496 p. https://doi.org/10.1201/9781315117638
  2. Boas M. L. Mathematical methods in the physical sciences. John Wiley & Sons, Inc., 2005. 864 p.
  3. Soifer V. A., Kotlar V., Doskolovich L. Iteractive methods for diffractive optical elements computation. London, CRC Press, 2014. 244 p. https://doi.org/10.1201/9781482272918
  4. Doskolovich L. L., Kharitonov S. I., Petrova O. I., Soifer V. A. A gradient method for design of multiorder varied-depth binary diffraction gratings. Optics and Lasers in Engineering, 1998, vol. 29, iss. 3–4, pp. 249–259. https://doi.org/10.1016/S0143-8166(97)00113-9
  5. Doskolovich L. L., Mingazov A. A., Bykov D. A., Andreev E. S., Bezus E. A. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Optics Express, 2017, vol. 25, iss. 22, pp. 26378–26392. https://doi.org/10.1364/OE.25.026378
  6. Doskolovich L. L., Bykov D. A., Andreev E. S., Bezus E. A., Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Optics Express, 2018, vol. 26, iss. 19, pp. 24602–24613. https://doi.org/10.1364/OE.26.024602
  7. Wu R., Xu L., Liu P., Zhang Y., Zheng Z., Li H., Liu X. Freeform illumination design: A nonlinear boundary problem for the elliptic Monge–Ampere equation. Optics Letters, 2013, vol. 38, iss. 2, pp. 229–231. https://doi.org/10.1364/OL.38.000229
  8. Wu R., Benitez P., Zhang Y., Minano J. C. Influence of the characteristics of a light source and target on the Monge–Ampere equation method in freeform optics design. Optics Letters, 2005, vol. 39, iss. 3, pp. 634–637. https://doi.org/10.1364/OL.39.000634
  9. Doskolovich L. L., Kazanskiy N. L., Kharitonov S. I., Perlo P., Bernard S. Designing reflectors to generate a line-shaped directivity diagram. Journal of Modern Optics, 2005, vol. 52, iss. 11, pp. 1529–1536. https://doi.org/10.1080/09500340500058082
  10. Doskolovich L. L., Kazanskiy N. L., Bernard S. Designing a mirror to form a line-shaped directivity diagram. Journal of Modern Optics, 2007, vol. 54, iss. 4, pp. 589–597. https://doi.org/10.1080/0950034060102186
  11. Doskolovich L. L., Andreev E. S., Moiseev M. A. On optical surface reconstruction from a prescribed source-target mapping. Computer Optics, 2016, vol. 40, iss. 3, pp. 338–345 (in Russian). https://doi.org/10.18287/2412-6179-2016-40-3-338-345
  12. Doskolovich L. L., Andreev E. S., Kharitonov S. I., Kazansky N. L. Reconstruction of an optical surface from a given source-target map. Journal of the Optical Society of America A, 2016, vol. 33, iss. 8, pp. 1504–1508. https://doi.org/10.1364/JOSAA.33.001504
  13. Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S. Multistage collocation pseudo-spectral method for the solution of the first order linear ODE. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). Samara, Russian Federation, Institute of Electrical Electronics Engineers Inc., 2022, pp. 1–6. https://doi.org/10.1109/ITNT55410.2022.9848731
  14. Lovetskiy K. P., Kulyabov D. S., Hissein A. W. Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order. Discrete and Continuous Models and Applied Computational Science, 2022, vol. 30, iss. 2, pp. 127–138. https://doi.org/10.22363/2658-4670-2022-30-2-127-138
  15. Stewart G. W. Afternotes on numerical analysis. Philadelphia, Pa, Society for Industrial and Applied Mathematics, 1996. 200 p. https://doi.org/10.1137/1.9781611971491
  16. Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials. Numerical Algorithms, 2020, vol. 83, pp. 1–31. https://doi.org/10.1007/s11075-019-00668-z
  17. Fornberg B. A practical guide to pseudospectral methods. Cambridge University Press, 1996. 230 p. https://doi.org/10.1017/CBO9780511626357
  18. Tenenbaum M., Pollard H. Ordinary differential equations. Dover, New York, Dover Publications, Inc., 1963. 818 p.
  19. Mendes N., Chhay M., Berger J., Dutykh D. Spectral methods. In: Mendes N., Chhay M., Berger J., Dutykh D. Numerical methods for diffusion phenomena in building physics. A practical introduction. Cham, Springer, 2019, pp. 167–209. https://doi.org/10.1007/978-3-030-31574-0_8

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».