Investigation of the influence of intersystem shunt characteristics on hemodynamic parameters and oxygen distribution

Cover Page

Cite item

Full Text

Abstract

Various intersystem shunts are widely used methods of treatment of newborns with congenital heart disease and reduced pulmonary blood flow. Shunt placement is associated with a high risk of postoperative complications and mortality. It is possible to predict the development of some complications using mathematical modeling methods and adjust the treatment. In this study we investigated the system ''aorta – shunt – pulmonary artery''. Three kinds of shunt placement with three different diameters for three patients have been analyzed. To solve hemodynamic problems, 27 cases were investigated using the common hemodynamic indices (wall shear stress, time-averaged, oscillatory shear index, relative residence time, etc.). The dependence of pulmonary artery blood flow distribution on shunt location is shown; the preferred location differs for different patient geometries. The energy loss of 4 mm diameter shunts is almost 2 times larger that of 3 mm shunts. A patient-specific approach to the treatment of each child based on objective data can significantly reduce the number of pediatric deaths and increase the effectiveness of the rehabilitation process.

About the authors

Alexander Rafaelovich Khairulin

Perm National Research Polytechnic University

ORCID iD: 0000-0002-7506-5568
Scopus Author ID: 57212652787
Russia, 614990, Perm, Komsomolskii av., 29

Irina O. Rakisheva

Perm National Research Polytechnic University

Russia, 614990, Perm, Komsomolskii av., 29

Alexei Gennad'evich Kuchumov

Perm National Research Polytechnic University

Russia, 614990, Perm, Komsomolskii av., 29

Mikhail Vladimirovich Golub

Kuban State University

ORCID iD: 0000-0003-4927-9623
Scopus Author ID: 36608070200
ResearcherId: C-1650-2013
Russia, 350040, Krasnodar, Stavropolskaya st., 49

Roman M. Shekhmametyev

Federal Center of Cardiovascular Surgery named after S. G. Sukhanov

ORCID iD: 0000-0002-0601-1486
35 Marshala Zhukova St., Perm 614013, Russia

Petr V. Lazarkov

Federal Center of Cardiovascular Surgery named after S. G. Sukhanov

ORCID iD: 0000-0001-7165-9134
35 Marshala Zhukova St., Perm 614013, Russia

References

  1. O’Connor M. J., Ravishankar C., Ballweg J. A., Gillespie M. J., Gaynor J. W., Tabbutt S., Dominguez T. E. Early systemic-to-pulmonary artery shunt intervention in neonates with congenital heart disease // Journal of Thoracic and Cardiovascular Surgery. 2011. Vol. 142, iss. 1. P. 106–112. https://doi.org/10.1016/j.jtcvs.2010.10.033
  2. Petrucci O., O’Brien S. M., Jacobs M. L., Jacobs J. P., Manning P. B., Eghtesady P. Risk factors for mortality and morbidity after the neonatal Blalock – Taussig shunt procedure // Annals of Thoracic Surgery. 2011. Vol. 92, iss. 2. P. 642–652. https://doi.org/10.1016/j.athoracsur.2011.02.030
  3. Ahmad U., Fatimi S. H., Naqvi I., Atiq M., Moizuddin S. S., Sheikh Kh. B., Shahbuddin S., Naseem T. M., Javed M. A. Modified Blalock – Taussig shunt: Immediate and short-term follow-up results in neonates // Heart Lung and Circulation. 2008. Vol. 17, iss. 1. P. 54–58. https://doi.org/10.1016/j.hlc.2007.06.003
  4. Van Der Linde D., Konings E. E. M., Slager M. A., Witsenburg M., Helbing W. A., Takkenberg J. J. M., Roos-Hesselink J. W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis // Journal of the American College of Cardiology. 2011. Vol. 58, iss. 21. P. 2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025
  5. Yuan S. M., Jing H. Palliative procedures for congenital heart defects // Archives of Cardiovascular Diseases. 2009. Vol. 102, iss. 6–7. P. 549–557. https://doi.org/10.1016/j.acvd.2009.04.011
  6. Elella R. A., Umereta N., Alabari I., Al Ahmadi M., Al Wadai A. The short- and long-term effect of Blalock – Taussig shunt size on the outcome after first palliative surgery for cyanotic heart diseases // Annals of Saudi Medicine. 2014. Vol. 34, iss. 6. P. 494–498. https://doi.org/10.5144/0256-4947.2014.494
  7. Sasikumar N., Hermuzi A., Fan C. P. S., Lee K. J., Chaturvedi R., Hickey E., Honjo O., Van Arsdell G. S., Caldarone C. A., Agarwal A., Benson L. Outcomes of Blalock – Taussig shunts in current era: A single center experience // Congenital Heart Disease. 2017. Vol. 12, iss. 6. P. 808–814. https://doi.org/10.1111/chd.12516
  8. Sisli E., Tuncer O. N., Senkaya S., Dogan E., Sahin H., Ayik M. F., Atay Y. Blalock – Taussig shunt size: Should it be based on body weight or target branch pulmonary artery size? // Pediatric Cardiology. 2019. Vol. 40, iss. 1. P. 38–44. https://doi.org/10.1007/s00246-018-1958-9
  9. Zhong L., Zhang J.-M., Su B., Tan R. S., Allen J. C. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: Challenges and opportunities // Frontiers in Physiology. 2018. Vol. 9. http://dx.doi.org/10.3389/fphys.2018.00742
  10. Kelm M., Goubergrits L., Bruening J., Yevtushenko P., Fernandes J. F. Model-based therapy planning allows prediction of haemodynamic outcome after aortic valve replacement // Scientific Reports. 2017. Vol. 7. Art. 9897. https://doi.org/10.1038/s41598-017-03693-x
  11. Lesage R., Van Oudheusden M., Schievano S., Van Hoyweghen I., Geris L., Capelli C. Mapping the use of computational modelling and simulation in clinics: A survey // Frontiers in Medical Technology. 2023. Vol. 5. P. 1–10. https://doi.org/10.3389/fmedt.2023.1125524
  12. Zhang N., Yuan H., Chen X., Liu J., Zhou C., Huang M., Jian Q., Zhuang J. Hemodynamic of the patent ductus arteriosus in neonates with modified Blalock – Taussig shunts // Computer Methods and Programs in Biomedicine. 2020. Vol. 186. Art. 105223. https://doi.org/10.1016/j.cmpb.2019.105223
  13. Lagana K., Balossino R., Migliavacca F., Pennati G., Bove E. L., De Leval M. R., Dubini G. Multiscale modeling of the cardiovascular system: Application to the study of pulmonary and coronary perfusions in the univentricular circulation // Journal of Biomechanics. 2005. Vol. 38, iss. 5. P. 1129–1141. https://doi.org/10.1016/j.jbiomech.2004.05.027
  14. Zhang N., Yuan H., Chen X., Liu J., Jian Q., Huang M., Zhang K. Computational fluid dynamics characterization of two patient-specific systemic-to-pulmonary shunts before and after operation // Computational and Mathematical Methods in Medicine. 2019. Vol. 2019. Art. 1502318. https://doi.org/10.1155/2019/1502318
  15. Himburg H. A., Grzybowski D. M., Hazel A. L., LaMack J. A., Li X. M., Friedman M. H. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability // American Journal of Physiology — Heart and Circulatory Physiology. 2004. Vol. 286, iss. 5. P. H1916–H1922. https://doi.org/10.1152/ajpheart.00897.2003
  16. Migliavacca F., Pennati G., Dubini G., Fumero R., Pietrabissa R., Urcelay G., Bove E. L., Hsia T. Y., De Leval M. R. Modeling of the Norwood circulation: Effects of shunt size, vascular resistances, and heart rate // American Journal of Physiology — Heart and Circulatory Physiology. 2001. Vol. 280, iss. 5. P. H2076–H2086. https://doi.org/10.1152/ajpheart.2001.280.5.H2076
  17. Boumpouli M., Danton M. H. D., Gourlay T., Kazakidi A. Blood flow simulations in the pulmonary bifurcation in relation to adult patients with repaired tetralogy of Fallot // Medical Engineering & Physics. 2020. Vol. 85. P. 123–138. https://doi.org/10.1016/j.medengphy.2020.09.014
  18. Hsia T. Y., Cosentino D., Corsini C., Pennati G., Dubini G., Migliavacca F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome // Circulation. 2011. Vol. 124, iss. 11, suppl. 1. P. 204–210. https://doi.org/10.1161/CIRCULATIONAHA.110.010769
  19. Waniewski J., Kurowska W., Mizerski J. K., Trykozko A., Nowinski K., Brzezinska-Rajszys G., Kosciesza A. The effects of graft geometry on the patency of a systemic-to-pulmonary shunt: A computational fluid dynamics study // Artificial Organs. 2005. Vol. 29, iss. 8. P. 642–650. https://doi.org/10.1111/j.1525-1594.2005.29102.x
  20. Liu J., Yuan H., Zhang N., Chen X., Zhou C., Huang M., Jian Q., Zhuang J. 3D simulation analysis of central shunt in patient-specific hemodynamics: Effects of varying degree of pulmonary artery stenosis and shunt diameters // Computational and Mathematical Methods in Medicine. 2020. Vol. 2020. Art. 4720908. https://doi.org/10.1155/2020/4720908
  21. Corsini C., Migliavacca F., Hsia T. Y., Pennati G. The influence of systemic-to-pulmonary arterial shunts and peripheral vasculatures in univentricular circulations: Focus on coronary perfusion and aortic arch hemodynamics through computational multi-domain modeling // Journal of Biomechanics. 2018. Vol. 79. P. 97–104. https://doi.org/10.1016/j.jbiomech.2018.07.042
  22. Arnaz A., Piskin S., Oguz G. N., Yal¸cinbas Y., Pekkan K., Sarioglu T. Effect of modified Blalock – Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow // Anatolian Journal of Cardiology. 2018. Vol. 20, iss. 1. P. 2–8. https://doi.org/10.14744/AnatolJCardiol.2018.54810
  23. Piskin S., Altin H. F., Yildiz O., Bakir I., Pekkan K. Hemodynamics of patient–specific aorta – pulmonary shunt configurations // Journal of Biomechanics. 2017. Vol. 50. P. 166–171. https://doi.org/10.1016/j.jbiomech.2016.11.014
  24. Kuchumov A. G., Khairulin A., Shmurak M., Porodikov A., Merzlyakov A. The effects of the mechanical properties of vascular grafts and an anisotropic hyperelastic aortic model on local hemodynamics during modified Blalock – Taussig shunt operation, assessed using FSI simulation // Materials. 2022. Vol. 15, iss. 8. Art. 2719. https://doi.org/10.3390/ma15082719
  25. Madhavan S., Kemmerling E. M. C. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow // BioMedical Engineering Online. 2018. Vol. 17. Art. 66. https://doi.org/10.1186/s12938-018-0497-1
  26. Kuchumov A. G., Kamaltdinov M. R., Khairulin A. R., Kochergin M. V., Shmurak M. I. Patient-specific 0D-3D modeling of blood flow in newborns to predict risks of complications after surgery // Health Risk Analysis. 2022. Vol. 2022, iss. 4. P. 159–167. https://doi.org/10.21668/health.risk/2022.4.15.eng
  27. Callaghan F. M., Grieve S. M. Translational physiology: Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population // American Journal of Physiology – Heart and Circulatory Physiology. 2018. Vol. 315, iss. 5. P. H1174–H1181. https://doi.org/10.1152/ajpheart.00017.2018
  28. Hoogendoorn A., Kok A. M., Hartman E. M. J., De Nisco G., Casadonte L., Chiastra C., Coenen A., Korteland S. A., Van der Heiden K., Gijsen F. J. H., Duncker D. J., Van der Steen A. F. W., Wentzel J. J. Multidirectional wall shear stress promotes advanced coronary plaque development: Comparing five shear stress metrics // Cardiovascular Research. 2021. Vol. 116, iss. 6. P. 1136–1146. https://doi.org/10.1093/cvr/cvz212
  29. Soares A. A., Carvalho F. A., Leite A. Wall shear stress-based hemodynamic descriptors in the abdominal aorta bifurcation: Analysis of a case study // Journal of Applied Fluid Mechanics. 2021. Vol. 14, iss. 6. P. 1657–1668. https://doi.org/10.47176/jafm.14.06.32319
  30. Peiffer V., Sherwin S. J., Weinberg P. D. Computation in the rabbit aorta of a new metric – the transverse wall shear stress — to quantify the multidirectional character of disturbed blood flow // Journal of Biomechanics. 2013. Vol. 46, iss. 15. P. 2651–2658. https://doi.org/10.1016/j.jbiomech.2013.08.003
  31. Zhao Y., Wang H., Chen W., Sun W., Yu X., Sun C., Hua G. Time-resolved simulation of blood flow through left anterior descending coronary artery: Effect of varying extent of stenosis on hemodynamics // BMC Cardiovascular Disorders. 2023. Vol. 23, iss. 1. Art. 156. https://doi.org/10.1186/s12872-023-03190-2
  32. Carvalho V., Rodrigues N., Ribeiro R., Costa P. F., Teixeira J. C. F., Lima R. A., Teixeira S. F. C. F. Hemodynamic study in 3D printed stenotic coronary artery models: Experimental validation and transient simulation // Computer Methods in Biomechanics and Biomedical Engineering. 2021. Vol. 24, iss. 6. P. 623–636. https://doi.org/10.1080/10255842.2020.1842377
  33. Renner J., Broch O., Duetschke P., Scheewe J., Hocker J., Moseby M., Jung O., Bein B. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery // British Journal of Anaesthesia. 2012. Vol. 108, iss. 1. P. 108–115. https://doi.org/10.1093/bja/aer371
  34. Santoro G., Capozzi G., Caianiello G., Palladino M. T., Marrone C., Farina G., Russo M. G., Calabro R. Pulmonary artery growth after palliation of congenital heart disease with duct-dependent pulmonary circulation: Arterial duct stenting versus surgical shunt // Journal of the American College of Cardiology. 2009. Vol. 54, iss. 23. P. 2180–2186. https://doi.org/10.1016/j.jacc.2009.07.043
  35. Zahorec M., Hrubsova Z., Skrak P., Poruban R., Nosal M., Kovacikova L. A comparison of Blalock – Taussig shunts with and without closure of the ductus arteriosus in neonates with pulmonary atresia // The Annals of Thoracic Surgery. 2011. Vol. 92, iss. 2. P. 653–658. https://doi.org/10.1016/j.athoracsur.2011.04.008
  36. Barnea O., Austin E. H., Richman B., Santamore W. P. Balancing the circulation: Theoretic optimization of pulmonary/systemic flow ratio in hypoplastic left heart syndrome // Journal of the American College of Cardiology. 1994. Vol. 24, iss. 5. P. 1376–1381. https://doi.org/10.1016/0735-1097(94)90123-6
  37. Moghadam M. E., Migliavacca F., Vignon-Clementel I. E., Hsia T. Y., Marsden A. L. Optimization of shunt placement for the Norwood surgery using multi-domain modeling // Journal of Biomechanical Engineering. 2012. Vol. 134, iss. 5. Art. 051002. https://doi.org/10.1115/1.4006814
  38. Barnea O., Santamore W. P., Rossi A., Salloum E., Chien S., Austin E. H. Estimation of oxygen delivery in newborns with a univentricular circulation // Circulation. 1998. Vol. 98, iss. 14. P. 1407–1413. https://doi.org/10.1161/01.CIR.98.14.1407
  39. Esmaily-Moghadam M., Murtuza B., Hsia T. Y., Marsden A. Simulations reveal adverse hemodynamics in patients with multiple systemic to pulmonary shunts // Journal of Biomechanical Engineering. 2015. Vol. 137, iss. 3. Art. 031001. https://doi.org/10.1115/1.4029429
  40. Singh D., Sernich S., Siwik E., Ross-Ascuitto N. T., Celestin C., Ascuitto R. J. Catheter-directed thrombolysis for occluded central (ascending aorta-to-pulmonary artery) shunts: Importance of shear stress-induced, platelet-mediated thrombosis // Journal of Structural Heart Disease. 2016. Vol. 2, iss. 3. P. 67–78. https://doi.org/10.12945/j.jshd.2016.002.15
  41. Xu L., Chen X., Cui M., Ren C., Yu H., Gao W., Li D., Zhao W. The improvement of the shear stress and oscillatory shear index of coronary arteries during Enhanced External Counterpulsation in patients with coronary heart disease // PLoS ONE. 2020. Vol. 15, iss. 3. Art. e0230144. https://doi.org/10.1371/journal.pone.0230144
  42. Dai W. F., Wu P., Liu G. M. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device // International Journal of Artificial Organs. 2021. Vol. 44, iss. 7. P. 471–480. https://doi.org/10.1177/0391398820975405
  43. Xiong J., Sun Q., Qian Y., Hu L., Tong Z., Liu J., Liu J. Effects of patent ductus arteriosus on the hemodynamics of modified Blalock – Taussig shunt based on patient-specific simulation // Frontiers in Physiology. 2021. Vol. 12. P. 1–10. https://doi.org/10.3389/fphys.2021.707128
  44. Caspi J., Pettitt T. W., Mulder T., Stopa A. Development of the pulmonary arteries after the Norwood procedure: Comparison between Blalock – Taussig shunt and right ventricular-pulmonary artery conduit // Annals of Thoracic Surgery. 2008. Vol. 86, iss. 4. P. 1299–1304. https://doi.org/10.1016/j.athoracsur.2008.06.016
  45. Brandt B., Camacho J. A., Mahoney L. T., Heintz S. E. Growth of the pulmonary arteries following Blalock – Taussig shunt // Annals of Thoracic Surgery. 1986. Vol. 42, iss. 6. P. S1–S4. https://doi.org/10.1016/S0003-4975(10)64631-0
  46. Odim J., Portzky M., Zurakowski D., Wernovsky G., Burke R. P., Mayer J. E., Castaneda A. R., Jonas R. A. Sternotomy approach for the modified Blalock – Taussig shunt // Circulation. 1995. Vol. 92, iss. 9. P. 256–261. https://doi.org/10.1161/01.CIR.92.9.256
  47. Kiran U., Aggarwal S., Choudhary A., Uma B., Kapoor P. M. The Blalock and Taussig shunt revisited // Annals of Cardiac Anaesthesia. 2017. Vol. 20, iss. 3. P. 323–330. https://doi.org/10.4103/aca.aca_80_17
  48. Xu P., Yuan H., Zhuang J., Zhang N., Jia Q., Dong Y., Jian Q., Huang M. The hemodynamics of patent ductus arteriosus in patients after central shunt operation // Computational and Mathematical Methods in Medicine. 2021. Vol. 2021. Art. 6675613. https://doi.org/10.1155/2021/6675613

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».