Asymptotic theory of the hyperbolic boundary layer in shells of revolution at shock edge loading of the tangential type
- Authors: Kirillova I.V.1
-
Affiliations:
- Saratov State University
- Issue: Vol 24, No 2 (2024)
- Pages: 222-230
- Section: Mechanics
- URL: https://journals.rcsi.science/1816-9791/article/view/353392
- DOI: https://doi.org/10.18500/1816-9791-2024-24-2-222-230
- EDN: https://elibrary.ru/SFYWBV
- ID: 353392
Cite item
Full Text
Abstract
The present work is devoted to the construction of asymptotically optimized equations of the hyperbolic boundary layer in thin shells of revolution in the vicinity of the dilation wave front at shock edge loading of the tangential type. These equations are derived by asymptotically integrating of the exact three-dimensional theory elasticity equations in the special coordinate system. This system defines the boundary layer region. The wave front has a complicated form, dependent on the shell curvature and therefore its asymptotical model is constructed. This geometrical model of the front defines it via the turned normals to the middle surface. Also, these turned normals define the geometry of the hyperbolic boundary layer applicability region. Constructed asymptotically optimised equations are formulated for the asymptotically main components of the stress-strain state: the longitudinal displacement and the normal stresses. The governing equation for the longitudinal displacement is the hyperbolic equation of the second order with the variable coefficients. The asymptotically main part of this equation is defined as the hyperbolic boundary layer in plates.
About the authors
Irina V. Kirillova
Saratov State University
ORCID iD: 0000-0001-8053-3680
SPIN-code: 3935-1990
Astrahanskaya str., 83, Saratov, Russia
References
- Nigul U. K. Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates // International Journal of Solids and Structures. 1969. Vol. 5, iss. 6. P. 607–627. https://doi.org/10.1016/0020-7683(69)90031-6
- Коссович Л. Ю. Нестационарные задачи теории упругих тонких оболочек. Саратов : Изд-во Саратовского ун-та, 1986. 176 с. EDN: VIOSWL
- Kaplunov J. D., Kossovich L. Yu., Nolde E. V. Dynamics of Thin Walled Elastic Bodies. San Diego : Academic Press, 1998. 226 p. https://doi.org/10.1016/C2009-0-20923-8, EDN: WNSAFB
- Kossovich L. Yu, Kirillova I. V. Dynamics of shells under shock loading: An asymptotic approach // Civil-Comp Proceedings. 2008. Vol. 88. P. 1–20. EDN: QPMORG 5.
- Коссович Л. Ю., Кириллова И. В. Асимптотическая теория нестационарных процессов в тонких оболочках // Актуальные проблемы механики сплошной среды : труды II междунар. конф. (Дилижан, 04–08 октября 2010 г.). Т. 1. Дилижан : ЕГУАС, 2010. С. 321–325.
- Kirillova I. V., Kossovich L. Yu. Dynamic boundary layer at nonstationary elastic wave propagation in thin shells of revolution // AiM’96: Proceedings of the Second International conference «Asymptotics in mechanics». Saint Petersburg State Marine Technical University, Saint Petersburg, Russia, October 13–16, 1996. Saint Petersburg, 1997. P. 121–128.
- Кириллова И. В. Асимптотический вывод двух типов приближения динамических уравнений теории упругости для тонких оболочек : дис. . . . канд. физ.-мат. наук. Саратов, 1998. 122 с.
- Гольденвейзер А. Л. Теория упругих тонких оболочек. Москва : Наука, 1976. 512 с.
Supplementary files


