A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in C^(k,1)

Cover Page

Cite item

Full Text

Abstract

A three-stage difference method for solving the Dirichlet problem of Laplace's equation on a rectangular parallelepiped is proposed and justified. In the first stage, approximate values of the sum of the pure fourth derivatives of the solution are defined on a cubic grid by the 14-point difference operator. In the second stage, approximate values of the sum of the pure sixth derivatives of the solution are defined on a cubic grid by the simplest $6$-point difference operator. In the third stage, the system of difference equations for the sought solution is constructed again by using the $6$-point difference operator with the correction by the quantities determined in the first and the second stages. It is proved that the proposed difference solution to the Dirichlet problem converges uniformly with the order $O(h^{6}(|\ln h|+1))$, when the boundary functions on the faces are from $C^{7,1}$ and on the edges their second, fourth, and sixth derivatives satisfy the compatibility conditions, which follows from the Laplace equation. A numerical experiment is illustrated to support the analysis made.

About the authors

Adiguzel A. Dosiyev

Western Caspian University

ORCID iD: 0000-0001-9154-8116
31 Istiglaliyyat St., Baku AZ1001, Azerbaijan

References

  1. Tarjan R. E. Graph theory and Gaussian elimination. In: Bunch J. R., Rose D. J. (eds.) Sparse Matrix Computations. Academic Press, 1976, pp. 3–22. https://doi.org/10.1016/B978-0-12-141050-6.50006-4
  2. Fox L. Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proceedings of the Royal Society A, 1947, vol. 190, pp. 31–59. https://doi.org/10.1098/rspa.1947.0060
  3. Woods L. C. Improvements to the accuracy of arithmetical solutions to certain two-dimensional field problems. The Quarterly Journal of Mechanics and Applied Mathematics, 1950, vol. 3, iss. 3, pp. 349–363. https://doi.org/10.1093/qjmam/3.3.349
  4. Volkov E. A. Solving the Dirichlet problem by a method of corrections with higher order differences. I. Differentsial’nye Uravneniya, 1965, vol. 1, iss. 7, pp. 946–960 (in Russian).
  5. Volkov E. A. Solving the Dirichlet problem by a method of corrections with higher order differences. II. Differentsial’nye Uravneniya, 1965, vol. 1, iss. 8, pp. 1070–1084 (in Russian).
  6. Berikelashvili G. K., Midodashvili B. G. Compatible convergence estimates in the method of refinement by higher-order differences. Differential Equations, 2015, vol. 51, iss. 1, pp. 107–115. https://doi.org/10.1134/S0012266115010103
  7. Volkov E. A. A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. Computational Mathematics and Mathematical Physics, 2009, vol. 49, iss. 3, pp. 496–501. https://doi.org/10.1134/S0965542509030117
  8. Volkov E. A., Dosiyev A. A. A highly accurate homogeneous scheme for solving the Laplace equation on a rectangular parallelepiped with boundary values in Ck1 . Computational Mathematics and Mathematical Physics, 2012, vol. 52, iss. 6, pp. 879–886. https://doi.org/10.1134/S0965542512060152
  9. Volkov E. A. On differential properties of solutions of the Laplace and Poisson equations on a parallelepiped and efficient error estimates of the method of nets. Proceedings of the Steklov Institute of Mathematics, 1969, vol. 105, pp. 54–78.
  10. Mikhailov V. P. Partial Differential Equations. Moscow, Mir, 1978. 396 p. (in Russian).
  11. Samarskii A. A. The Theory of Difference Schemes. Marcel, Dekker Inc., 2001. 761 p.
  12. Volkov E. A. Application of a 14-point averaging operator in the grid method. Computational Mathematics and Mathematical Physics, 2010, vol. 50, iss. 12, pp. 2023–2032. https://doi.org/10.1134/S0965542510120055
  13. Smith B., Bjorstad P., Gropp W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996. 238 p.
  14. Volkov E. A. On the smoothness of solutions to the Dirichlet problem and the method of composite grids on polyhedra. Proceedings of the Steklov Institute of Mathematics, 1981, vol. 150, pp. 71–103.
  15. Volkov E. A. A method of composite grids on a prism with an arbitrary polygonal base. Proceedings of the Steklov Institute of Mathematics, 2003, vol. 243, pp. 1–23. https://doi.org/10.1046/j.1468-2982.2003.00539.x
  16. Volkov E. A. On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on the rectangular parallelepiped. Russian Journal of Numerical Analysis and Mathematical Modelling, 2004, vol. 19, iss. 3, pp. 269–278. https://doi.org/10.1515/1569398041126500
  17. Dosiyev A. A. The high accurate block-grid method for solving Laplace’s boundary value problem with singularities. SIAM Journal on Numerical Analysis, 2004, vol. 42, iss. 1, pp. 153–178. https://doi.org/10.1137/S0036142900382715
  18. Dosiyev A. A. The block-grid method for the approximation of the pure second order derivatives for the solution of Laplace’s equation on a staircase polygon. Journal of Computational and Applied Mathematics, 2014, vol. 259, pt. A, pp. 14–23. https://doi.org/10.1016/j.cam.2013.03.022
  19. Dosiyev A. A., Sarikaya H. A highly accurate difference method for approximating the solution and its first derivatives of the Dirichlet problem for Laplace’s equation on a rectangle. Mediterranean Journal of Mathematics, 2021, vol. 18, art. 252. https://doi.org/10.1007/s00009-021-01900-8

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».