Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane

Cover Page

Cite item

Full Text

Abstract

The work investigates the rolling dynamics of a dynamically symmetrical heavy sphere (or a heavy spherical shell) along an inclined rough plane (platform) rotating with constant or periodic angular velocity around an axis, which is perpendicular to the plane and passing through some fixed point of this plane. Nonholonomic and holonomic constraints are imposed at the point of contact of the sphere with the reference plane. The equations of motion of the sphere are constructed. In the case of the constant angular velocity of the plane at any slope and in the case of the periodic angular velocity of the plane located horizontally the boundedness of the velocities of the geometric center of the sphere is proved. Moreover, in the case of the constant angular velocity of the plane, solutions are found analytically. Based on numerical integration, it is shown that for the periodic angular velocity of the plane and for the nonzero slope the square of the velocity vector of the geometric center of the sphere increases indefinitely. Two controls for the slope of the plane proportional to the projections of the velocity vector of the sphere on the coordinate axes lying in the reference plane are introduced. In the case of the constant angular velocity of the plane, a qualitative analysis of the equations of motion has been carried out, the control parameters at which the square of the velocity vector of the geometric center of the sphere will be bounded and at which it will be unbounded have been analytically found. The results of this control are presented for the case of periodic angular velocity of the plane. It is shown that by controlling the slope of the plane, it is possible to achieve the boundedness of the square of the velocity vector of the geometric center of the sphere. The obtained results are illustrated, the trajectories of the contact point and graphs of the desired mechanical parameters are constructed.

About the authors

Evgeniya Arifzhanovna Mikishanina

Steklov Mathematical Institute of Russian Academy of Sciences;

ORCID iD: 0000-0003-4408-1888
Scopus Author ID: 57208109286
Russia, 117966, Moscow, Gubkina str., 8

References

  1. Чаплыгин С. А. О катании шара по горизонтальной плоскости // Математический сборник. 1903. Т. 24, № 1. C. 139–168.
  2. Мощук Н. К. О движении шара Чаплыгина на горизонтальной плоскости // Прикладная математика и механика. 1983. Т. 47, вып. 6. C. 916–921.
  3. Kilin A. A. The dynamics of Chaplygin ball: The qualitative and computer analysis // Regular and Chaotic Dynamics. 2002. Vol. 6, iss. 3. P. 291–306. https://doi.org/10.1070/RD2001v006n03ABEH000178, EDN: LGXBPX
  4. Борисов А. В., Килин А. А., Мамаев И. С. Проблема дрейфа и возвращаемости при качении шара Чаплыгина // Нелинейная динамика. 2013. Т. 9, № 4. С. 721–754. EDN: SAHBBR
  5. Mikishanina E. A. Dynamics of the Chaplygin sphere with additional constraint // Communications in Nonlinear Science and Numerical Simulation. 2023. Vol. 117. Art. 106920. https://doi.org/10.1016/j.cnsns.2022.106920
  6. Borisov A. V., Mikishanina E. A. Dynamics of the Chaplygin ball with variable parameters // Russian Journal of Nonlinear Dynamics. 2020. Vol. 16, iss. 3. P. 453–462. https://doi.org/10.20537/nd200304, EDN: DTQQDK
  7. Борисов А. В., Мамаев И. С., Бизяев И. А. Иерархия динамики при качении твердого тела без проскальзывания и верчения по плоскости и сфере // Нелинейная динамика. 2013. Т. 9, № 2. С. 141–202. EDN: SAHAOF
  8. Борисов А. В., Мамаев И. С. О движении шара Чаплыгина по наклонной плоскости // Доклады Академии наук. 2006. Т. 406, № 5. С. 620–623. EDN: HSYLNV
  9. Харламова Е. И. Качение шара по наклонной плоскости // Прикладная математика и механика. 1958. Т. 22, вып. 4. С. 504–509.
  10. Bizyaev I. A., Borisov A. V., Mamaev I. S. Dynamics of the Chaplygin ball on a rotating plane // Russian Journal of Mathematical Physics. 2018. Vol. 25. P. 423–433. https://doi.org/10.1134/S1061920818040027, EDN: KKREPJ
  11. Борисов А. В., Килин А. А., Мамаев И. С. Как управлять шаром Чаплыгина при помощи роторов // Нелинейная динамика. 2012. Т. 8, № 2. С. 289–307. EDN: OYPUBZ
  12. Bolotin S. The problem of optimal control of a Chaplygin ball by internal rotors // Regular and Chaotic Dynamics. 2012. Vol. 17, iss. 6. P. 559–570. https://doi.org/10.1134/S156035471206007X, EDN: RGBYKL
  13. Борисов А. В., Килин А. А., Мамаев И. С. Динамические системы с неинтегрируемыми связями: вакономная механика, субриманова геометрия и неголономная механика // Успехи математических наук. 2017. Т. 72, вып. 5 (437). С. 3–62. https://doi.org/10.4213/rm9783, EDN: ZRSFRR
  14. Борисов А. В., Мамаев И. С., Килин А. А., Бизяев И. А. Избранные задачи неголономной механики. Ижевск : Институт компьютерных исследований, 2016. 883 с. EDN: YSHXAH

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).