On structure of isomorphisms of universal graphic automata
- Authors: Molchanov V.A.1, Farakhutdinov R.A.1
-
Affiliations:
- Saratov State University
- Issue: Vol 25, No 1 (2025)
- Pages: 34-45
- Section: Mathematics
- URL: https://journals.rcsi.science/1816-9791/article/view/352328
- DOI: https://doi.org/10.18500/1816-9791-2025-25-1-34-45
- EDN: https://elibrary.ru/DEBJXL
- ID: 352328
Cite item
Full Text
Abstract
Keywords
About the authors
Vladimir Aleksandrovich Molchanov
Saratov State University
ORCID iD: 0000-0001-6509-3090
SPIN-code: 7518-1174
Astrahanskaya str., 83, Saratov, Russia
Renat Abuhanovich Farakhutdinov
Saratov State University
ORCID iD: 0000-0002-2877-8557
SPIN-code: 7667-3987
Astrahanskaya str., 83, Saratov, Russia
References
- Plotkin B. I. Groups of automorphisms of algebraic systems. California, Wolters Noordhoff Publishing, 1972. 502 p. (Rus. ed. : Moscow, Nauka, 1966. 604 p.).
- Pinus A. G. Elementary equivalence of derived structures of free semigroups, unars, and groups. Algebra and Logic, 2004, vol. 43, iss 6, pp. 408–417. https://doi.org/10.1023/B:ALLO.0000048829.60182.48
- Pinus A. G. On the elementary equivalence of derived structures of free lattices. Russian Mathematics, 2002, iss. 5, pp. 44–47 (in Russian). EDN: HQUCWH
- Gluskin L. M. Semigroups and rings of endomorphisms of linear spaces. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1959, vol. 23, iss. 6, pp. 841–870 (in Russian).
- Gluskin L. M. Semi-groups of isotone transformations. Uspekhi Matematicheskikh Nauk, 1961, vol. 16, iss. 5, pp. 157–162 (in Russian).
- Vazhenin Yu. M. Elementary properties of semigroups of transformations of ordered sets. Algebra and Logic, 1970, vol. 9, iss 3, pp. 169–179. https://doi.org/10.1007/BF02218675
- Vazhenin Yu. M. Elementary definability and elementary characterizability of classes of reflexive graphs. Izvestiya Vysshih Uchebnyh Zavedenij. Matematika, 1972, iss. 7, pp. 3–11 (in Russian).
- Mikhalev A. V. Endomorphism rings of modules and lattices of submodules. Journal of Soviet Mathematics, 1976, vol. 5, iss. 6, pp. 786–802. https://doi.org/10.1007/BF01085149
- Plotkin B. I., Greenglaz L. Ya., Gvaramiya A. A. Elementy algebraicheskoy teorii avtomatov [Elements of algebraic theory of automata]. Moscow, Vyshaja Shkola, 1994. 191 p. (in Russian).
- Molchanov V. A., Farakhutdinov R. A. On definability of universal graphic automata by their input symbol semigroups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 42–50. https://doi.org/10.18500/1816-9791-2020-20-1-42-50
- Bogomolov A. M., Salii V. N. Algebraicheskie osnovy teorii diskretnykh sistem [Algebraic foundations of the theory of discrete systems]. Moscow, Nauka, 1997. 368 p. (in Russian).
- Harary F. Graph theory. Boston, Addison-Wesley Publishing Company, 1969. 270 p. (Russ. ed. : Moscow, Mir, 1973. 300 p.).
- Farakhutdinov R. A. Relatively elementary definability of the class of universal graphic semiautomata in the class of semigroups. Russian Mathematics, 2022, vol. 66, iss. 1, pp. 62–70. https://doi.org/10.3103/S1066369X22010029
- Kurosh A. G. Teoriya grupp [Group theory]. Moscow, Nauka, 1967. 648 p. (in Russian).
Supplementary files



