Study of the role of neurotrophic factors in the regulation of regeneration processes in damaged somatic nerves under the action of semax peptide preparation

Cover Page

Cite item

Full Text

Abstract

The content of neurotrophic factors in damaged somatic nerves under the action of the drug «Semax» was studied and their role in the regulation of regenerative processes in injured nerve conductors was established. It has been shown that intramuscular administration of the drug is accompanied by a signifi cant increase in the level of NGF and NT-3 both in the proximal and distal parts of the nerve. At the same time, there are no signifi cant changes in the quantitative content of neuroregulin-1 against the background of its use. The data obtained suggest that one of the mechanisms of action of Semax is its ability to interact with Schwann cells and stimulate the release of NGF and NT-3, which facilitate the regeneration of damaged axons and do not aff ect the synthesis of neuroregulin-1. In addition, the study of the quantitative content of individual protein fractions showed that the drug «Semax» has the most pronounced eff ect on the level of neurofi lament-H in both segments of the nerve conductor, which indicates the important role and activation of the mitogen-activated protein kinase (MAPK / ERK) signalling pathway, which regulates processes of cytoskeletal protein synthesis and axon growth. Nevertheless, it was shown that in the variant of the experiment using Semax, there was a decrease in the level of GAP-43, which is a key marker of axonal growth, both in the proximal and distal segments of the nerve. The data obtained most likely indicate that the intramuscular administration of the drug does not aff ect the processes of axon growth, but is aimed at maintaining the survival of neurons and accelerated restoration of the functional state of nerve fi bres, which is also confi rmed by the appearance of an action potential and the ability of the nerve to conduct it against the background of the use of the Semax drug.

About the authors

Marina V. Parchaykina

Ogarev Mordovia State University

ORCID iD: 0000-0002-6627-6582
68, Bolshevistskaya Str., Saransk, 430005, Russia

Tatyana P. Kuzmenko

Ogarev Mordovia State University

ORCID iD: 0000-0002-3497-2751
68, Bolshevistskaya Str., Saransk, 430005, Russia

Elena V. Chudaikina

Ogarev Mordovia State University

ORCID iD: 0000-0001-6141-2568
68, Bolshevistskaya Str., Saransk, 430005, Russia

Maria Yu. Gladysheva

Ogarev Mordovia State University

ORCID iD: 0000-0009-7150-0247
68, Bolshevistskaya Str., Saransk, 430005, Russia

Elvira S. Revina

Ogarev Mordovia State University

ORCID iD: 0000-0002-2418-7012
68, Bolshevistskaya Str., Saransk, 430005, Russia

Viktor V. Revin

Ogarev Mordovia State University

68, Bolshevistskaya Str., Saransk, 430005, Russia

References

  1. Hernández-Echeagaray E. Chapter Four – Neurotrophin-3 modulates synaptic transmission // Vitamins and Hormones. 2020. Vol. 114. P. 71–89. https://doi.org/10.1016/bs.vh.2020.04.008
  2. Cespedes J.C., Liu M., Harbuzariu A., Nti A., Onyekaba J., Cespedes H. W., Bharti P. K., Solomon W., Anyaoha P., Krishna S., Adjei A., Botchway F., Ford B., Stiles J. K. Neuregulin in health and disease // Inter. J. Brain Disord. Treat. 2018. Vol. 4, iss. 1. P. 024. https://doi.org/10.23937/2469-5866/1410024
  3. Sánchez-Alegría K., Flores-León M., Avila-Muñoz E., Rodríguez-Corona N., Arias C. PI3K Signaling in neurons: A central node for the control of multiple functions // Int. J. Mol. Sci. 2018. Vol. 19. P. 3725.
  4. Zhang X., He X., Li Q., Kong X., Ou Z., Zhang L., Gong Z., Long D., Li J., Zhang M., Ji W., Zhang W., Xu L., Xuan A. PI3K/AKT/mTOR signaling mediates valproic acid-induced neuronal differentiation of neural stem cells through epigenetic modifi cations // Stem Cell Reports. 2017. Vol. 8, Iss. 5. P. 1256–1269. https://doi.org/10.1016/j.stemcr.2017.04.006
  5. Pinyaev S. I., Kuzmenko T. P., Revina N. V., Parchaykina M. V., Pronin A. S., Syusin I. V., Novozhilova O. S., Revin V. V., Chudaikina E. V., Revina E. S. Infl uence of resveratrol on oxidation processes and lipid phase characteristics in damaged somatic nerves // Biomed. Res. Int. 2019. Vol. 2019. P. 2381907. https://doi.org/10.1155/2019/2381907
  6. Bota O., Fodor L. The infl uence of drugs on peripheral nerve regeneration // Drug Metabolism Reviews. 2019. Vol. 51, iss. 3. P. 266–292. https://doi.org/10.1080/03602532.2019.1632885
  7. Королева С. В., Мясоедов Н. Ф. Семакс – универсальный препарат для терапии и исследований // Известия Российской академии наук. Серия биологическая. 2018. № 6. С. 669–682.
  8. Akimov M. G., Fomina-Ageeva E. V., Dudina P. V., Andreeva L. A., Myasoyedov N. F., Bezuglov V. V. ACTH(6-9)PGP peptide protects SH-SY5Y cells from H2O2, tert-Butyl hydroperoxide, and cyanide cytotoxicity via stimulation of proliferation and induction of prosurvival-related genes // Molecules. 2021. Vol. 26, iss. 7. P. 1878. https://doi.org/10.3390/molecules26071878
  9. Bakaeva Z. V., Surin A. M., Lizunova N. V., Zgodova A. E., Krasilnikova I. A., Fisenko A. P., Frolov D. A., Andreeva L. A., Myasoedov N. F., Pinelis V. G. Neuroprotective potential of peptides HFRWPGP (ACTH6-9PGP), KKRRPGP, and PyrRP in cultured cortical neurons at glutamate excitotoxicity // Dokl. Biochem. Biophys. 2020. Vol. 491, iss. 1. P. 62–66. https://doi.org/10.1134/S1607672920020040
  10. Кузьменко Т. П., Парчайкина М. В., Ревина Э. С., Гладышева М. Ю., Ревин В. В. Влияние нейротрофических факторов на состав белков при повреждении и регенерации соматических нервов // Биофизика. 2023. Т. 68, № 2. С. 334–348. https://doi.org/10.31857/S0006302923020138
  11. Laemmli U.K. Cleavage of Structural Proteins During the Assembly of the Head of Baceriophage T4 // Nature. 1970. Vol. 277. P. 680–685. https://doi.org/10.1038/227680a0
  12. Newbern J. Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination // Semin. Cell Dev. Biol. 2010. Vol. 21. P. 922–928. https://doi.org/10.1016/j.semcdb.2010.08.008
  13. Querfurth H., Lee H. K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration // Mol. Neurodegener. 2021. Vol. 16, iss. 1. P. 44. https://doi.org/10.1186/s13024-021-00428-5
  14. Huang H., Liu H., Yan R., Hu M. PI3K/Akt and ERK/ MAPK signaling promote different aspects of neuron survival and axonal regrowth following rat facial nerve axotomy // Neurochem. Res. 2017. Vol. 42, iss. 12. P. 3515–3524. https://doi.org/10.1007/s11064-017-2399-1
  15. Hutton S. R., Otis J. M., Kim E. M., Lamsal Y., Stuber G. D., Snider W. D. ERK/MAPK signaling is required for pathway-specifi c striatal motor functions // J. Neurosci. 2017. Vol. 37, iss. 34. P. 8102–8115. https:// doi.org/10.1523/JNEUROSCI.0473-17.2017
  16. Wang C. Y., Lin H. C., Song Y. P., Hsu Y.T., Lin S. Y., Hsu P. C., Lin C. H., Hung C. C., Hsu M. C., Kuo Y. M., Lee Y. J., Hsu C. Y., Lee Y. H. Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses // Mol. Cell Biol. 2015. Vol. 35, iss. 10. P. 1712–1726. https://doi.org/10.1128/MCB.01332-14
  17. Fyffe-Maricich S. L., Schott A., Karl M., Krasno J., Miller R. H. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system // J. Neurosci. 2013. Vol. 33, iss. 47. P. 18402–18408. https://doi.org/10.1523/JNEUROSCI.2381-13.2013
  18. Пожилова Е. В., Новиков В. Е. Фармакодинамика и клиническое применение нейропептида АКТГ4-10 // Вестник Смоленской государственной медицинской академии. 2020. Т. 19, № 3. С. 76–86. https://doi.org/10.37903/vsgma.2020.3.10

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies