Algorithm for Calculating Statically Indeterminate Trusses Using the Force Method
- Авторлар: Lalin V.V.1,2, Ibragimov T.R.1
-
Мекемелер:
- Peter the Great St. Petersburg Polytechnic University
- RUDN University
- Шығарылым: Том 20, № 5 (2024)
- Беттер: 404-417
- Бөлім: Analytical and numerical methods of analysis of structures
- URL: https://journals.rcsi.science/1815-5235/article/view/325868
- DOI: https://doi.org/10.22363/1815-5235-2024-20-5-404-417
- EDN: https://elibrary.ru/CONRDX
- ID: 325868
Дәйексөз келтіру
Толық мәтін
Аннотация
The study focuses on developing an algorithm for calculating statically indeterminate trusses using the force method. The main challenge in algorithmizing the force method lies in obtaining the solution to the homogeneous equilibrium equations, which is complicated by the ambiguity in selecting the primary system. The idea behind the presented algorithm is based on using the transposed compatibility matrix of the structure as the general solution to the homogeneous equilibrium equations. The governing system of equations eliminates the need to select redundant unknowns, as the column of unknowns is generated automatically. The method for obtaining compatibility equations in statically indeterminate truss cells is presented through a direct examination of changes in the area of truss loops. The compatibility matrix of the system is composed of rows of compatibility equations for independent statically indeterminate truss loops. Compatibility equations for the deformations of triangular and rectangular truss cells are derived, and a method for obtaining compatibility equations for externally statically indeterminate trusses is described. Using the proposed algorithm, the flexibility matrix of a truss with parallel chords is presented. The algorithm removes the ambiguity in selecting the primary system, and the structure of the flexibility matrix is determined by the numbering of the statically indeterminate loops of the system. There is no need to use the equilibrium equations when constructing the flexibility matrix of the structure.
Авторлар туралы
Vladimir Lalin
Peter the Great St. Petersburg Polytechnic University; RUDN University
Email: vllalin@yandex.ru
ORCID iD: 0000-0003-3850-424X
SPIN-код: 8220-6921
Doctor of Technical Sciences, Professor of the Higher School of Industrial, Civil and Road Construction of the Institute of Civil Engineering, Peter the Great St. Petersburg Polytechnic University; Professor of the Department of Construction Technologies and Structural Materials of the Engineering Academy, RUDN university
Saint Petersburg, Russia; Moscow, RussiaTimur Ibragimov
Peter the Great St. Petersburg Polytechnic University
Хат алмасуға жауапты Автор.
Email: timuribragimov.ra@gmail.com
ORCID iD: 0000-0002-2742-1345
SPIN-код: 5342-2799
Graduate student of the Higher School of Industrial, Civil and Road Construction of the Institute of Civil Engineering
Saint Petersburg, RussiaӘдебиет тізімі
- Kaveh A., Zaerreza A. Comparison of the graph-theoretical force method and displacement method for optimal design of frame structures. Structures. 2022;43:1145-1159. http://doi.org/10.1016/J.ISTRUC.2022.07.035
- Kaveh A., Shabani Rad A. Metaheuristic-based optimal design of truss structures using algebraic force method. Structures. 2023;50:1951-1964. http://doi.org/10.1016/J.ISTRUC.2023.02.123
- Kaveh A., Zaerreza A. Optimum Design of the Frame Structures Using the Force Method and Three Recently Improved Metaheuristic Algorithms. International Journal of Optimization in Civil Engineering. 2023;13(3):309-325.
- Saeed N.M., Kwan A.S.K. Simultaneous displacement and internal force prescription in shape control of pin-jointed assemblies. Journal of Aircraft. 2016;4:2499-2506. http://doi.org/10.2514/1.J054811
- du Pasquier C., Shea K. Validation of a nonlinear force method for large deformations in shape-morphing structures. Structural and Multidisciplinary Optimization. 2022;3:1-17. http://doi.org/10.1007/s00158-022-03187-z
- Mohammed Saeed N., Aulla Manguri A. An Approximate Linear Analysis of Structures Utilizing Incremental Loading of Force Method. UKH Journal of Science and Engineering. 2020;6(4):37-44. http://doi.org/10.25079/ukhjse. v4n1y2020.pp37-44
- Yuan X., Liang X., Li A. Shape and force control of prestressed cable-strut structures based on nonlinear force method. Advances in Structural Engineering. 2016;12(19):1917-1926. http://doi.org/10.1177/1369433216652411
- Reksowardojo A.P., Senatore G., Smith I.F.C. Design of Structures That Adapt to Loads through Large Shape Changes. Journal of Structural Engineering. 2020;5:1-16. http://doi.org/10.1061/(asce)st.1943-541x.0002604
- Denke P.H. A general digital computer analysis of statically indeterminate structures. NASA-TN-D-1666. 1962.
- Przemieniecki J.S., Denke P.H. Joining of complex substructures by the matrix force method. Journal of Aircraft. 1966;3(3):236-243. http://doi.org/10.2514/3.43731
- Topçu A., Thierauf G. Structural optimization using the force method. World Congress on Finite Element Methods in Structural Mechanics. Bournemouth, England, 1975.
- Topçu A. A contribution to the systematic analysis of finite element structures using the force method. Doctoral dissertation, Essen University, 1979. (In German)
- Soyer E., Topcu A. Sparse self-stress matrices for the finite element force method. International Journal for Numerical Methods in Engineering. 2001;9:2175-2194. http://doi.org/10.1002/nme.119
- Pellegrino S., Van Heerden T. Solution of equilibrium equations in the force method: A compact band scheme for underdetermined linear systems. Computers & Structures. 1990;5:743-751. http://doi.org/10.1016/0045-7949(90)90103-9
- Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix. International Journal of Solids and Structures. 1993;21(30):3025-3035. http://doi.org/10.1016/0020-7683(93)90210-X
- Rozin L.A. Rod systems as systems of finite elements. Leningrad. 1976. (In Russ.) Розин Л.А. Стержневые системы как системы конечных элементов. Ленинград: Издательство ЛГУ, 1976. 232 c.
- Coleman T.F., Pothen A. The Null Space Problem I. Complexity. SIAM Journal on Algebraic Discrete Methods. 1986;4(7):527-537. http://doi.org/10.1137/0607059
- Coleman T.F., Pothen A. The Null Space Problem II. Algorithms. SIAM Journal on Algebraic Discrete Methods. 1987;4(8):544-563. http://doi.org/10.1137/0608045
- Pothen A. Sparse null basis computations in structural optimization. Numerische Mathematik. 1989;5:501-519. http://doi.org/10.1007/BF01398913
- Gilbert J.R., Heath M.T. Computing a Sparse Basis for the Null Space. SIAM Journal on Algebraic Discrete Methods. 1987;3(8):446-459. http://doi.org/10.1137/0608037
- Henderson J.C. Topological Aspects of Structural Linear Analysis. Aircraft Engineering and Aerospace Technology. 1960;5:137-141. http://doi.org/10.1108/eb033249
- Maunder E.A. Topological and linear analysis of skeletal structures. Imperial College, London, 1971. ISBN: 2013206534
- De Henderson J.C.C., Maunder E.A.W. A Problem in Applied Topology: on the Selection of Cycles for the Flexibility Analysis of Skeletal Structures. IMA Journal of Applied Mathematics. 1969;2(5):254-269. http://doi.org/10.1093/IMAMAT/ 5.2.254.
- Kaveh A. Application of Topology and Matroid Theory to the flexibility analysis of structures. Ph.D. Thesis London University Imperial College, 1974.
- Kaveh A. Subminimal Cycle Bases for the Force Method of Structural Analysis. Communications in Applied Numerical Methods. 1987;4(3):277-280. http://doi.org/10.1002/cnm.1630030407
- Kaveh A. Bandwidth reduction of rectangular matrices. Communications in Numerical Methods in Engineering. 1993;3(9):259-267. http://doi.org/10.1002/cnm.1640090310
- Koohestani K. An orthogonal self-stress matrix for efficient analysis of cyclically symmetric space truss structures via force method. International Journal of Solids and Structures. 2011;2:227-233. http://doi.org/10.1016/j.ijsolstr.2010.09.023
- Koohestani K. Innovative numerical form-finding of tensegrity structures. International Journal of Solids and Structures. 2020;206:304-313. http://doi.org/10.1016/j.ijsolstr.2020.09.034
- Patnaik S. An integrated force method for discrete analysis. International Journal for Numerical Methods in Engineering. 1973;2(6):237-251. http://doi.org/10.1002/nme.1620060209
- Patnaik S.N., Pai S.S., Hopkins D.A. Compatibility condition in theory of solid mechanics (elasticity, structures, and design optimization). Archives of Computational Methods in Engineering. 2007;4(14):431-457. http://doi.org/10.1007/S11831-007-9011-9/METRICS
- Wei X.F., Patnaik S.N., Pai S.S., Ling P.P. Extension of Integrated Force Method into Stochastic Domain. International Journal for Computational Methods in Engineering Science and Mechanics. 2009;3(10):197-208. http://doi.org/ 10.1080/15502280902795060
- Wei X.F., Patnaik S.N. Application of stochastic sensitivity analysis to integrated force method. International Journal of Stochastic Analysis. 2012;1:249201. http://doi.org/10.1155/2012/249201
- Postnikov M.M. Analytical Geometry. Moscow: Nauka Publ.; 1979. (In Russ.) Постников М.М. Аналитическая геометрия. Москва: Наука, 1979. 336 c.
- Washizu K. Variational Methods in Elasticity and Plasticity. New York: Oxford, Pergamon Press, 1974.
Қосымша файлдар
