Stages of teaching law students to draft international legal documents in English based on artificial intelligence tools

Cover Page

Cite item

Full Text

Abstract

Importance. At the present time, the technologies of artificial intelligence are gradually finding their way into a wide variety of different fields of professional activity, including education. Over the past years, there has appeared a great corpus of research in pedagogical and methodical literature dedicated to the didactic and methodological potential of artificial intelligence. This study represents how the use of artificial intelligence technologies can diversify the learning and professional practice of learners, as well as take over some of the routine functions of a teacher. Genie AI, LegalAI, AI Legal Document Generator – these are all new artificial intelligence tools that allow international law students to draft international legal documents according to the characteristics of the legal systems of foreign authorities. At the same time, their linguodidactic potential is insufficiently revealed, which requires the development of a step-by-step methodology for teaching students to draft international legal documents in a foreign language based on these artificial intelligence tools. The aim of the research is to develop a step-by-step methodology for teaching law students to draft international legal documents based on artificial intelligence tools.Materials and Methods. The study is conducted on the basis of an expert approach. The materials are scientific articles considered with pedagogy and teaching foreign language methodology published in Higher Attestation Commission scientific journals and journals indexed in Scopus and Web of Science. Scientific literature analysis, methods of observation, and survey of university professors who deliver profile disciplines to students of the ‘Jurisprudence’ major, are used.Results and Discussion. A step-by-step methodology of teaching law students to draft international legal documents based on Genie AI, LegalAI, AI Legal Document Generator artificial intelligence tools is developed. The methodology consists of the following series of steps: 1) students study the structure of an international legal document taking into account the specificities of the legal systems of the participating countries in a regular class as part of an integrated course;2) students study or repeat an active vocabulary and grammar that are used in the process of drafting an international legal document; 3) explanation of the goals of drafting international legal documents on the basis of Genie AI learning practice, defining it’s stages and period to the students;4) discussion about information security and author ethics and the inadmissibility of unauthorised borrowing of generative AI material; 5) extracurricular independent educational practice on drafting international legal documents by students with the artificial intelligence tool; 6) mutual evaluation and discussion in small groups of students regarding international legal documents drafted with artificial intelligence tools; 7) selective evaluation by the instructor of legal documents drafted by students on the basis of practice with the artificial intelligence tool; 8) students’ reflection on the usefulness of using the artificial intelligence tool for drafting international legal documents.Conclusion. The novelty of the research lies in the development of a step-by-step methodology for teaching law students to draft international legal documents based on Genie AI, LegalAI, AI Legal Document Generator artificial intelligence tools. Prospects for further works are studying the linguodidactic potential of other artificial intelligence tools created for lawyers, and developing methods of teaching language aspects, types of speech activity, and specialised disciplines on their basis.

About the authors

M. V. Gavrilov

Derzhavin Tambov State University

Author for correspondence.
Email: maximgavrilov2010@yandex.ru
ORCID iD: 0000-0003-0114-6856

Lecturer of Linguistics and Language Didactics Department

33 Internatsionalnaya St., Tambov, 392000, Russian Federation

References

  1. Sysoyev P.V. (2023). Artificial intelligence in education: awareness, readiness and practice of using artificial intelligence technologies in professional activities by university faculty. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 32, no. 10, pp. 9-33. (In Russ.) https://doi.org/10.31992/0869-3617-2023-32-10-9-33, https://elibrary.ru/tzytkm
  2. Avramenko A.P., Akhmedova A.S., Bulanova E.R. (2023). Chatbot technology as a means of forming foreign language grammatical competence in self-study. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki = Tambov University Review: Series Humanities, vol. 28, no. 2, pp. 386-394. (In Russ.) https://doi.org/10.20310/1810-0201-2023-28-2-386-394, https://elibrary.ru/abfjqp
  3. Kharlamenko I.V. (2024). Artificial intelligence to assist foreign language teacher in working on lexical skills. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 55-60. (In Russ.) https://elibrary.ru/pxxouk
  4. Sysoyev P.V., Filatov E.M. (2023). Method of the development of students’ foreign language communication skills based on practice with a chatbot. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 3 (63), pp. 201-218. (In Russ.) https://doi.org/10.32744/pse.2023.3.13, https://elibrary.ru/fjyhew
  5. Perminova G.V. (2023). Using chatbot ChatGPT in the process of teaching German as a second foreign language. Inostrannye yazyki v shkole = Foreign Languages at School, no. 8, pp. 46-54. (In Russ.) https://elibrary.ru/rkuvac
  6. Sorokin D.O. (2024). The use of voice assistants for the development of foreign language oral communication skills. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 73-77. (In Russ.) https://elibrary.ru/rfmsmk
  7. Klochikhin V.V. (2024). Application of AI-based corpora in identifying language patterns and students’ research. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3 (47), pp. 39-46. (In Russ.) https://elibrary.ru/jfylhf
  8. Klochikhin V.V., Polyakov O.G. (2023). Artificial intelligence technologies: corpus analysis tools in foreign language teaching. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 24-30. (In Russ.) https://elibrary.ru/bdttfe
  9. Sysoyev P.V., Filatov E.M. (2024). Method of teaching students’ foreign language creative writing based on evaluative feedback from artificial intelligence. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 1 (67), pp. 115-135. (In Russ.) https://doi.org/10.32744/pse.2024.1.6, https://elibrary.ru/tmstly
  10. Sysoyev P.V., Filatov E.M., Sorokin D.O. (2024). Feedback in foreign language teaching: from information technologies to artificial intelligence. Yazyk i kul’tura = Language and Culture, no. 65, pp. 242-261. (In Russ.) https://doi.org/10.17223/19996195/65/11, https://elibrary.ru/plzyov
  11. Itinson K.S. (2020). Informatization of medical education: artificial intelligence systems in the education of students and doctors. Baltiiskii gumanitarnyi zhurnal = Baltic Humanitarian Journal, vol. 3, no. 32, pp. 91-93. (In Russ.) http://doi.org/10.26140/bgz3-2020-0903-0021
  12. Waisberg N., Hudek A. (2021). AI for Lawyers: How Artificial Intelligence is Adding Value, Amplifying Expertise, and Transforming Careers. Hoboken, Wiley Publ., 208 p.
  13. Sysoyev P.V., Kharin V.V., Gavrilov M.V. (2024). Method of teaching law students to draft international legal documents based on artificial intelligence tools as part of an integrated course. Yazyk i kul’tura = Language and Culture, no. 67, pp. 272-289. (In Russ.) https://doi.org/10.17223/19996195/67/15
  14. Feuerriegel S., Shrestha Y.R., von Krogh G., Zhang C. (2022). Bringing artificial intelligence to business management. Nature Machine Intelligence, vol. 4, no 7, pp. 611-613. http://doi.org/10.1038/s42256-022-00512-5, https://elibrary.ru/nblvwj
  15. Parshina K.V., Saltykova G.M. (2021). Modern technology in teaching students the direction of “design” training. Pedagogicheskii zhurnal = Pedagogical Journal, vol. 11, no. 1-1, pp. 263-270. (In Russ.) http://doi.org/10.34670/AR.2021.47.77.032, https://elibrary.ru/scqdmg
  16. Levin B.A., Piskunov A.A., Polyakov V.Yu., Savin A.V. (2022). Artificial intelligence in engineering education. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 31, no. 7, pp. 79-95. (In Russ.) http://doi.org/10.31992/0869-3617-2022-31-7-79-95, https://elibrary.ru/kcnapj
  17. Prokhorov A.V. (2023). Media products based on VR- and AR-technologies in teaching foreign languages. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 39-44. (In Russ.) https://elibrary.ru/wmvzmg
  18. Kapranchikova K.V. (2014). Mobile technologies in teaching a foreign language to non-linguistic major students.Yazyk i kul’tura = Language and Culture, no. 1 (25), pp. 84-94. (In Russ.) https://elibrary.ru/rzrksr
  19. Sysoyev P.V. (2020). Organization of learners’ project activities for students on the basis of modern information and communication technologies and project management. Inostrannye yazyki v shkole = Foreign Languages at School, no. 9, pp. 15-28. (In Russ.) https://elibrary.ru/vmbats
  20. Zolotov P.Yu. (2020). Development of foreign language pragmatic skills of high school students through teaching pragmatic markers using corpora. Inostrannye yazyki v shkole = Foreign Languages at School, no. 10, pp. 13-19. (In Russ.) https://elibrary.ru/jccckn
  21. Yuzbasheva E.G. (2019). Linguistic internet projects in grammatical skills formation of linguistic university students. Vestnik Tambovskogo universiteta. Seriya: Gumanitarnye nauki. Tambov = Tambov University Review. Series: Humanities, vol. 24, no. 180, pp. 53-60. (In Russ.) https://doi.org/10.20310/1810-0201-2019-24-180-53-60, https://elibrary.ru/abofia
  22. Yuzbasheva E.G. (2022). The functions of the teacher in the formation of speech grammatical skills of students based on the implementation of foreign-language internet projects. Nauka i shkola = Science and School, no. 4, pp. 231-238. (In Russ.) https://doi.org/10.31862/1819-463X-2022-4-231-238, https://elibrary.ru/mxsdyc
  23. Shul’gina E.M. (2020). Forming high school students’ speech competence on basis of WebQuest technology. Inostrannye yazyki v shkole = Foreign Languages at School, no. 10, pp. 52-59. (In Russ.) https://elibrary.ru/jbrnig
  24. Sysoyev P.V., Aksenova I.N. (2023). Method of teaching students foreign language communicative activities based on dictogloss. Perspektivy nauki i obrazovaniya = Perspectives of Science and Education, no. 5 (65), pp. 301-321. (In Russ.) https://doi.org/10.32744/pse.2023.5.18, https://elibrary.ru/mvvqwn
  25. Cherkasova E.A. (2023). Formation of grammar skills by means of chatbot application in English classed at technical university. Pedagogicheskii zhurnal = Pedagogical Journal, vol. 13, no. 8-1, pp. 182-190. (In Russ.) https://doi.org/10.34670/AR.2023.79.83.018, https://elibrary.ru/bfppxc
  26. Filatov E.M. (2024). Automated assessment of learners’ foreign language essay based on feedback from artificial intelligence. Inostrannye yazyki v shkole = Foreign Languages at School, no. 3, pp. 78-83. (In Russ.) https://elibrary.ru/ngeqsn
  27. Polat E.S. (2000). Project method in foreign language classes. Inostrannye yazyki v shkole = Foreign Languages at School, no. 2, pp. 3-10. (In Russ.) https://elibrary.ru/skefbl
  28. Sysoyev P.V. (2024). Ethics and AI-plagiarism in an academic environment: students’ understanding of compliance with author’s ethics and the problem of plagiarism in the process of interaction with generative artificial intelligence. Vysshee obrazovanie v Rossii = Higher Education in Russia, vol. 33, no. 2, pp. 31-53. (In Russ.) https://doi.org/10.31992/0869-3617-2024-33-2-31-53, https://elibrary.ru/vtaiuo

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».