ROLE OF TOLL-LIKE RECEPTORS IN LICHEN PLANUS PATHOGENESIS


Cite item

Full Text

Abstract

Among diseases of the oral mucosa, lichen planus (LP) is up to 13%. Over the past decade, the number of patients with this dermatosis has doubled. Currently, the etiopathogenetic factor of LP development remains unclear, but there are many theories of the development of this disease. However, in the literature there is no description of a common pathogenetic link. In connection with th e above, the authors believe that these theories can be combined with new scientific facts and ideas about the barrier role of innate, and in particular, mucosal immunity. The review article describes the role of mucosal immunity of mucous membranes - toll-like receptors (TLR), describes the mechanism of activation of the immune system through TLR2 and TLR4, shows the relationship of immune inflammation triggers - the reaction of food intolerance, factors that contribute to the development of hypersensitivity in the pathogenesis of LP. The mechanism is presented for the presentation of autoantigens to immunocompetent cells with the participation of heat shock proteins. The prospects for further study of TLR with the aim of increasing the effectiveness of the treatment of LP are presented.

About the authors

Dmitry E. Mikhalev

Siberian state medical University

Email: dm199412@gmail.com
graduate student of the Dentistry Department «Siberian State Medical University» 634050, Tomsk, Russia

V. A Stolyarova

Siberian state medical University

634050, Tomsk, Russia

N. A Cherevko

Siberian state medical University

634050, Tomsk, Russia

P. G Sysolyatin

Novosibirsk state medical University

630091, Novosibirsk, Russia

O. D Baidik

Siberian state medical University

634050, Tomsk, Russia

References

  1. Кубанова А.А. Дерматовенерология 2015: Болезни кожи. Инфекции, передаваемые половым путем. Федеральные клинические рекомендации. Москва. 2016; 5: 768.
  2. Al-Hashimi I., Schifter M., Lockhart P.B., Wray D., Brennan M., Migliorati C.A., Axell T., Bruce A.J., Carpenter W., Eisenberg E., et al. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103(25): 1 - 12. DOI: 10.1016/ j.tripleo.2006.11.001.
  3. Farhi D., Dupin N. Pathophysiology, etiologic factors, and clinical management of oral lichen planus, part I: facts and controversies. Clin. Dermatol. 2010; 28: 100-8. DOI: 10.1016/ j.clindermatol.2009.03.004.
  4. Ронь Г.И., Епишова A.A. Влияние характера питания на течение красного плоского лишая. Проблемы стоматологии. 2015; 2: 19-23.
  5. Лукиных Л.М., Тиунова Н.В. Современные представления об этиопатогенезе красного плоского лишая слизистой оболочки полости рта. Современная стоматология. 2013; 2: 18-20.
  6. Сурдина Э.Д., Цимбалистов А.В., Кравчук Ю.А., Каспина А.И. Современные представления о ведущих факторах развития и лечения красного плоского лишая с проявлениями на слизистой оболочке полости рта. Вестник Санкт-Петербургского университета. 2011; 4: 112-8.
  7. Титаренко М.А., Столярова В.А., Сысолятин П.Г., Байдик О.Д. Роль гастроинтестинальной патологии в развитии и тяжести течения красного плоского лишая слизистой оболочки полости рта. Бюллетень сибирской медицины. 2018; 17(3): 151-6. https:/ /doi.org/10.20538/1682-0363-2018-3-151-156.
  8. Salem A., Mustafa R., Listyarifah D., Al-Samadi A., Barreto G., Nordstrom D. Eklund K.K. Altered expression of toll-like receptors in human oral epithelium in oral lichenoid reactions. American Journal of Dermatopathology. 2017; 39 (11): 811-8. DOI: 10.1097/ DAD.0000000000000807.
  9. Alrashdan M.S., Cirillo N., Mccullough M. Oral lichen planus: a literature review and update. Arch. Dermatol. Res. 2016; 308(8): 539-51. doi: 10.1007/s00403-016- 1667-2
  10. Чикин В.В., Минеева А.А. Федеральные клинические рекомендации по ведению больных с красным плоским лишаем. Москва; 2013: 6.
  11. Ohno S., Tateishi Y., Tatemoto Y., Morishita K., Sasabe E., Yamamoto. Enhanced expression of Toll-like receptor 2 in lesional tissues and peripheral blood monocytes of patients with oral lichen planus. J. Dermatol. 2011; 38(4): 324-33. doi: 10.1111/j.1346- 8138.2010.00956.x.
  12. Srinivasan M., Kodumudi K.N., Zunt S.L. Soluble CD14 and toll-like receptor-2 are potential salivary biomarkers for oral lichen planus and burning mouth syndrome. Clinical Immunology. 2008; 126(1): 31-7. doi: 10.1016/j.clim.2007.08.014.
  13. Siponen M., Kauppila J.H., Soini Y., Salo T. TLR4 and TLR9 are induced in oral lichen planus. J. Oral Pathol. Med. 2012; 41(10): 741-7. doi: 10.1111/j.1600-0714.2012.01169.x.
  14. Катунина О.Р. Функции Toll-подобных рецепторов как компонента врожденного иммунитета и их участие в патогенезе дерматозов различной этиологии. Вестник дерматологии и венерологии. 2011; 2(2): 18-25.
  15. Кубанов А.А., Абрамова Т.В. Распознавание рецепторов врожденного иммунитета (Toll-подобные рецепторы) в патогенезе кожных заболеваний. Цитокины и воспаление. 2015; 14(1): 11-7.
  16. Ахматова Н.К., Киселевский М.В. Врожденный иммунитет: противоопухолевый и противоинфекционный. Практическая медицина. 2008; 254.
  17. Bhan U., Lukacs N.W., Osterholzer J.J., Newstead M.W., Zeng X., Moore T.A., McMillan T.R., Krieg A.M., Akira S., Standiford T.J. TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells. J. Immunol. 2007; 179(6), 3937-46. doi: 10.4049/jimmunol.179.6.3937.
  18. Егорова Н.Б., Курбатова Е.А. Иммунотерапевтическая концепция применения микробного антигена при атопии и расстройствах, связанных с факультативной микрофлорой, на примере многокомпонентной вакцины Immunovac VP4. Медицинская иммунология. 2008; 10(1): 13-20. doi: 10.15789 / 1563-0625- 2008-1-13-20.
  19. Renn C.N., Sanchez D.J., Ochoa M.T., Legaspi A.J., Oh C.K., Liu P.T., et al. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J. Immunol. 2006; 177(1): 298-305. doi: 10.4049/jimmunol.168.9.4701.
  20. Сорокина Е.В. Toll-подобные рецепторы и распознавание первичного патогена при инфекционной и неинфекционной патологии кожи. Иммунопатология, аллергология, инфектология. 2012; 2: 6-15.
  21. Medzhitov R., Preston-Hurlburt P., Janeway C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388(6640): 394-7. doi: 10.1038/41131.
  22. Hanuskova E., Plevkova J. Histamine intolerance. Alergie. 2013; 4: 245-52.
  23. Caballero B. Food Intolerance. Encyclopedia of Human Nutrition. 2012; 2-4: 315-21.
  24. Mattar R., de Campos Mazo D.F., Carrilho F.J. Lactose intolerance: diagnosis, genetic, and clinical factors. Clin. Exp. Gastroenterol. 2012; 5: 113-21. doi: 10.2147/CEG.S32368.
  25. Wald A. Irritable Bowel Syndrome. Conn's Current Therapy. Elsevier 2019; 240-3.
  26. Chadwick V.S., Chen W., Shu D., Paulus B., Bethwaite P., Tie A., Wilson I. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002; 122: 1778-83.
  27. Буторова Л.И., Токмулина Г.М. Синдром раздраженного кишечника: основные принципы диагностики и лечение в поликлинической практике. Учебное пособие. Москва; 2014: 45-7.
  28. Guo W.T., Liu P., Dong L.N., Wang J.P. The correlation study between the changes of intestinal mucosa predominant bacteria and Toll-like receptor 2, Toll-like receptor 4 gene expressions in diarrhea-predominant irritable bowel syndrome patients. Zhonghua nei ke za zhi. 2016; 55(7): 541-3. doi: 10.3760/cma.j.issn.0578- 1426.2016.07.011.
  29. Koyak E., Akbal E., Koklu S., Ergul B., Can M. The colonic tissue levels of TLR2, TLR4 and nitric oxide in patients with irritable bowel syndrome. Internal Medicine. 2016; 55(9): 1043-8. DOI:0.2169/ internalmedicine.55.5716.
  30. Belmonte L., Beutheu Youmba S., Berliaux-Vandaele N., Antonietti M., Lecleire S., Zalar A., et al. Differential mucosal immune activation according to the disease subtype. PLoS ONEG. 2012; 7(8). doi: 10.1371/journal.pone.0042777.
  31. Herrera M.G., Pizzuto M., Lonez, C., Rott, K., Hutten A., Sewald N., Ruysschaert J.-M., Dodero V.I. Large supramolecular structures of 33-mer gliadin peptide activate toll-ike receptors in macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine. 2018; 14(4): 1417-27 doi: 10.1016/j.nano.2018.04.014.
  32. Read N., Krejs G., Read M., Santa Ana C., Morawski S., Fordtran J. Chronic diarrhea of unknown origin. Gastroenterology. 1980; 78(2): 264-71. PMID: 7350049.
  33. Pecoraro A., Nappi L., Crescenzi L., D’Armiento F.P., Genovese A., Spadaro G. Chronic Diarrhea in Common Variable Immunodeficiency: a Case Series and Review of the Literature. J. Clin. Immunol. 2018; 38(1): 67-76. doi: 10.1007/s10875-017- 0461-z.
  34. Wallin R.P., Lundqvist A., More, S.H., von Bonin A., Kiessling R., Ljunggren H.-G. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002; 23: 130-5.
  35. Nishikawa M., Takemoto S., Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int. J. Pharm. 2008; 354(1-2): 23-7. doi: 10.1016/j.ijpharm.2007.09.030 PMID: 17980980.
  36. Drexler S.K., Foxwell B.M. The role of toll-like receptors in chronic inflammation. International Journal of Biochemistry and Cell Biology. 2010; 42: 506-18.
  37. Ermertcan aT, Ozturk F, Gunduz K. Toll-like receptors and skin. Journal of the Eur. Acad. Dermatol. Venereol. 2011; 25: 997-1006.
  38. Blanco P., Paluckad A. K, Pascuald V., Banchereaud J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases.
  39. Cytokine and Growth Factor Reviews. 2008; 19: 41-52.
  40. Lal G., Yin N., Xu J., Lin M., Schroppel S., Ding Y. et al. Distinct inflammatory signals have physiologically divergent effects on epigenetic regulation of Foxp3 expression and Treg function. Amer. J. Trans. 2011; 11: 203-14.
  41. Nyirenda M.H., Sanvito L., Darlington PJ., O’brien K., Zhang G.X., Constantinescu C.S., et al. TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotypewith reduced suppressive function. J. Immunol. 2011; 187: 2278-90.
  42. Wallin R.P., Lundqvist A., More S.H., von Bonin A., Kiessling R., Ljunggren H.-G., Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002; 23: 130-5.
  43. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140: 805-20. DOI:10.1016/ j.cell.2010.01.022.
  44. Jiang D., Liang J., Fan J., Yu S., Chen S., Luo Y., et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 2005; 11: 1173-9.
  45. Wenzel J., Scheler M., Proelss J., Bieber T., Tu'ting T. Type I interferon-associated cytotoxic inflammation in lichen planus. J. Cutaneous Pathol. 2006; 33: 672-8. DOI: 10.2353/ ajpath.2007.070281.
  46. Zhou X., Bailey-Bucktrout S., Jeker L.T., Bluestone J.A. Plasticity of CD4+ FoxP3+ T cells. Curr. Opinion Immunol. 2009; 21: 281-5. doi: 10.1016/j.coi.2009.05.007.
  47. Drexler S.K., Foxwell B.M. The role of toll-like receptors in chronic inflammation. Int. J. Biochem. Cell Biol. 2010; 42: 506-18. doi: 10.1016/j.biocel.2009.10.009.
  48. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Pillars article: immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 2011; 186: 3808-21.
  49. Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A. Foxp3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010; 10: 490-500. doi: 10.1038/nri2785.
  50. Tao X.A., Xia J., Chen X.B., Wang H., Dai Y.H., Rhodus N.L., et al. Foxp3 T regulatory cells in lesions of oral lichen planus correlated with disease activity. Oral Dis. 2010; 16: 76-82. DOI:10.1111/ j.1601-0825.2009.01608.x.

Copyright (c) 2019 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies