Inflammatory response and its correction in forming a host response to exposure to adverse environmental factors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study systematically review knowledge about the mechanisms of formation of an inflammatory reaction under the influence of biological, physical, and chemical factors, their similarities and differences, and possible methods of pharmacological correction of pathological conditions associated with excessive activation. The effect of adverse environmental factors, such as biological, physical, and chemical factors, causes a systemic response, which is aimed at maintaining homeostasis and is caused, among other things, by a coordinated reaction of the immune system. Phlogogenic agents result in the activation and regulation of the inflammatory response, which is formed by cellular and humoral components of innate immunity. The activation of innate immunity is characterized by a rapid host response, which diminishes following the elimination of “foreign” invaders, endogenous killer cells, and neogenesis. Depending on the nature of the active factors (biopathogens, allergens, toxins, ionizing radiation, etc.), the mechanisms of immune response arousal have unique features mainly originating from the differences in the recognition of specific molecular patterns and “danger signals” by different receptors. However, inflammatory mediators and inflammatory response patterns at the systemic level are largely similar even under widely different triggers. Inflammation, having evolved as an adaptive reaction directed at the immune response, can lead to the development of chronic inflammation and autoimmune diseases due to a mismatch in mechanisms of its control. A “failure” in the regulation of the inflammatory process is the excessive activation of the immune system, which leads to the cytokine release syndrome (hypercytokinemia, or “cytokine storm”) and can cause self-damage (destruction) of tissues, multiple-organ failure, sepsis, and even death. Modern advances in the study of the pathogenetic bases of the inflammatory response are suggested, such as pharmacological correction using pattern recognition receptor antagonists, pro-inflammatory cytokine inhibitors, or blocking of key control genes or signaling pathways.

About the authors

Denis B. Ponomarev

State scientific-research test Institute of military medicine of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: gniiivm_2@mil.ru
SPIN-code: 3745-5748

candidate of biological sciences

Russian Federation, Saint Petersburg

Alexander V. Stepanov

State scientific-research test Institute of military medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0002-1917-2895
SPIN-code: 7279-7055

doctor of medical sciences

Russian Federation, Saint Petersburg

Evgeny V. Ivchenko

State scientific-research test Institute of military medicine of the Ministry of Defense of the Russian Federation; Military medical academy of S.M. Kirov

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0001-5582-1111
SPIN-code: 5228-1527

doctor of medical sciences, associate professor

Russian Federation, Saint Petersburg; Saint Petersburg

Alexey B. Seleznev

State scientific-research test Institute of military medicine of the Ministry of Defense of the Russian Federation; North-western State Medical University named after I.I. Mechnikov

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0003-4014-3973
SPIN-code: 7853-3773

candidate of medical sciences, associate professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vasiliy Y. Apchel

Military medical academy of S.M. Kirov; A.I. Herzen Russian State Pedagogical University of the Ministry of Education and Science of the Russian Federation

Email: gniiivm_2@mil.ru
ORCID iD: 0000-0001-7658-4856
SPIN-code: 4978-0785
Scopus Author ID: 6507529350
ResearcherId: Е-8190-2019

doctor of medical sciences, professor

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–115. doi: 10.3857/roj.2014.32.3.103
  2. Chereshnev VA, Gusev EYu. Immunological and pathophysiological mechanisms of systemic inflammation. Medical Immunology (Russia). 2012;14(1-2):9–20. (In Russ.). doi: 10.15789/1563-0625-2012-1-2-9-20
  3. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell. 2014;54(2):281–288. doi: 10.1016/j.molcel.2014.03.030
  4. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6): 7204–7218. doi: 10.18632/oncotarget.23208
  5. Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010;140(6):771–776. doi: 10.1016/j.cell.2010.03.006
  6. Litvitsky PF. Inflammation. Current Pediatrics. 2006;5(3):46–51. (In Russ.).
  7. Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–831. doi: 10.1038/ni.3790
  8. Danyang L, Minghua W. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. doi: 10.1038/s41392-021-00687-0
  9. Relja B, Mörs K, Marzi I. Danger signals in trauma. Eur J Trauma Emerg Surg. 2018;44(3):301–316. doi: 10.1007/s00068-018-0962-3
  10. Relja B, Land WG. Damage-associated molecular patterns in trauma. Review Eur J Trauma Emerg Surg. 2020;46(4):751–775. doi: 10.1007/s00068-019-01235-w
  11. Takeuchi O, Akira Sh. Pattern Recognition Receptors and Inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
  12. Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest. 2008;118(2):413–420. doi: 10.1172/JCI34431
  13. Garg AD, Galluzzi L, Apetoh L, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi: 10.3389/fimmu.2015.00588
  14. Tong A-J, Liu X, Thomas BJ, et al. A stringent systems approach uncovers gene-specific mechanisms regulating inflammation. Cell. 2016;165(1):165–179. doi: 10.1016/j.cell.2016.01.020
  15. Rivera A, Siracusa MC, Yap GS, Gause WC. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol. 2016;17(4):356–363. doi: 10.1038/ni.3375
  16. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16(4):343–353. doi: 10.1038/ni.3123
  17. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514–524. doi: 10.1016/j.smim.2016.10.009
  18. Buck MD, O’Sullivan D, Geltink RIK, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166(1):63–76. doi: 10.1016/j.cell.2016.05.035
  19. Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017;46(3):364–378. doi: 10.1016/j.immuni.2017.03.010
  20. Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017;133: 117–138. doi: 10.1016/j.bcp.2016.09.018
  21. Chairatana Ph, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Critical Rev Biochem Mol Biol. 2017;52(1):45–56. doi: 10.1080/10409238.2016.1243654
  22. Moschen AR, Adolph TE, Gerner RR, et al. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metabol. 2017;28(5):388–397. doi: 10.1016/j.tem.2017.01.003
  23. Hajishengallis G, Reis ES, Mastellos DC, et al. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–1298. doi: 10.1038/ni.3858
  24. Hau CS, Kanda N, Tada Y, et al. Lipocalin-2 exacerbates psoriasiform skin inflammation by augmenting T-helper 17 response. J Dermatol. 2016;43(7):785–794. doi: 10.1111/1346-8138.13227
  25. Bakunina LS, Litvinenko IV, Nakatis YaA, et al. Sepsis: pozhar i bunt na tonushchem v shtorm korable: monografiya. In 3th parts. Part I. Triggery vospaleniya. Retseptsiya triggerov vospaleniya i signal’naya transduktsiya. Pluzhnikov NN, Chepura SV, Khurtsilava OG, editors. Saint-Petersburg: Izd-vo SZGMU im. I.I. Mechnikova; 2018. 232 p. (In Russ.).
  26. Longo DL, Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. doi: 10.1056/NEJMra2026131
  27. Tisoncik JR, Korth MJ, Simmons CP, et al. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. doi: 10.1128/MMBR.05015-11
  28. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195. doi: 10.1182/blood-2014-05-552729
  29. Shimabukuro-Vornhagen A, Gödel Ph, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9
  30. Wong JP, Viswanathan S, Wang M. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017;9(2):169–178. doi: 10.4155/fmc-2016-0181
  31. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
  32. Soy M, Keser G, Atagündüz P. Pathogenesis and treatment of cytokine storm in COVID-19. Turk J Biol. 2021;45(4):372–389. doi: 10.3906/biy-2105-37
  33. Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021;11(1): 316–329. doi: 10.7150/thno.49713
  34. Barker ChA, Kim SK, Budhu S, et al. Cytokine release syndrome after radiation therapy: case report and review of the literature. J Immunother Cancer. 2018;6(1):1. doi: 10.1186/s40425-017-0311-9
  35. Zhang Ch, Liang Zh, Ma Sh, et al. Radiotherapy and Cytokine Storm: Risk and Mechanism. Front Oncol. 2021;11:670464. doi: 10.3389/fonc.2021.670464
  36. Mukherjee D, Coates PhJ, Lorimore SA, Wright EG. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol. 2014;232(3):289–299. doi: 10.1002/path.4299
  37. Schaue D, Micewicz ED, Ratikan JA, et al. Radiation and Inflammation. Semin Radiat Oncol. 2015;25(1):4–10. doi: 10.1016/j.semradonc.2014.07.007
  38. Yahyapour R, Amini P, Rezapour S, et al. Radiation-induced inflammation and autoimmune diseases. Mil Med Res. 2018;5:9. doi: 10.1186/s40779-018-0156-7
  39. Rios CI, Cassatt DR, Hollingsworth BA, et al. Commonalities between COVID-19 and radiation injury. Radiat Res. 2021;195(1): 1–24. doi: 10.1667/RADE-20-00188.1
  40. Gorbunov NV, Sharma P. Protracted oxidative alterations in the mechanism of hematopoietic acute radiation syndrome. Antioxidants (Basel). 2015;4(1):134–152. doi: 10.3390/antiox4010134
  41. Adjemian S, Oltean T, Martens S, et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis. 2020;11(11):1003. doi: 10.1038/s41419-020-03209-y
  42. Chen Y, Li Y, Huang L, et al. Antioxidative stress: inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance. Oxid Med Cell Longev. 2021;8:6620306. doi: 10.1155/2021/6620306
  43. Jandhyala DM, Wong J, Mantis NJ, et al. A novel zak knockout mouse with a defective ribotoxic stress response. Toxins (Basel). 2016;8(9):259. doi: 10.3390/toxins8090259
  44. Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016;11(1):1391–1401. doi: 10.2147/COPD.S106009
  45. Lindauer ML, Wong J, Iwakura Y, Magun BE. Pulmonary inflammation triggered by ricin toxin requires macrophages and IL-1 signaling. J Immunol. 2009;183(2):1419–1426. doi: 10.4049/jimmunol.0901119
  46. Dong M, Yu H, Wang Y, et al. Critical role of toll-like receptor 4 (TLR4) in ricin toxin-induced inflammatory responses in macrophages. Toxicol Lett. 2020;321:54–60. doi: 10.1016/j.toxlet.2019.12.021
  47. Xu N, Yu K, Yu H, et al. Recombinant ricin toxin binding subunit B (RTB) stimulates production of TNF-α by mouse macrophages through activation of TLR4 signaling pathway. Front Pharmacol. 2020;11:526129. doi: 10.3389/fphar.2020.526129
  48. Chikuma Sh. CTLA-4, an essential immune-checkpoint for Tcell activation. Curr Top Microbiol Immunol. 2017;410:99–126. doi: 10.1007/82_2017_61
  49. Dimeloe S, Mehling M, Frick C, et al. The immune-metabolic basis of effector memory CD4+ Tcell function under hypoxic conditions. J Immunol. 2016;196(1):106–114. doi: 10.4049/jimmunol.1501766
  50. Liu Q, Zhou Y, Yang Zh. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10. doi: 10.1038/cmi.2015.74
  51. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. doi: 10.1016/j.clim.2020.108393
  52. Cavalli G, Dinarello ChA. Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol. 2018;9:1157. doi: 10.3389/fphar.2018.01157
  53. Dinarello ChA. Treatment of inflammatory diseases with IL-1 blockade. Curr Otorhinolaryngol Rep. 2018;6(1):1–14. doi: 10.1007/s40136-018-0181-9
  54. Christersdottir T, Pirault J, Gisterå A, et al. Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. Eur Heart J. 2019;40(30):2495–2503. doi: 10.1093/eurheartj/ehz206
  55. Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-like receptor signaling as a promising therapy for inflammatory diseases: A journey from molecular to nano therapeutics. Front Physiol. 2017;8:508. doi: 10.3389/fphys.2017.00508
  56. Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol. 2019;31(9):617–625. doi: 10.1093/intimm/dxz037
  57. Marsolais D, Hahm B, Kevin B, et al. A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci USA. 2009;106(5): 1560–1565. doi: 10.1073/pnas.0812689106
  58. Walsh KB, Teijaro JR, Wilker PR, et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA. 2011;108(29):12018–12023. doi: 10.1073/pnas.1107024108
  59. Teijaro JR, Walsh KB, Rice S, et al. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci USA. 2014;111(10):3799–3804. doi: 10.1073/pnas.1400593111
  60. Jacobson JR. Sphingolipids as a novel therapeutic target in radiation-induced lung injury. Cell Biochem Biophys. 2021;79(3): 509–516. doi: 10.1007/s12013-021-01022-8
  61. Naz1 F, Arish M. Battling COVID-19 Pandemic: Sphingosine-1-Phosphate Analogs as an Adjunctive Therapy? Front Immunol. 2020;11:1102. doi: 10.3389/fimmu.2020.01102
  62. Tasat DR, Yakisich JS. Rationale for the use of sphingosine analogues in COVID-19 patients. Clin Med (Lond). 2021;21(1): e84–e87. doi: 10.7861/clinmed.2020-0309

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Ponomarev D.B., Stepanov A.V., Ivchenko E.V., Seleznev A.B., Apchel V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies