Protein signaling molecules affecting the development of innate immunity mechanisms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The principle protein molecules (interferon gene stimulator, adapter proteins, B-cell lymphoma 2 proteins, zinc-finger antiviral protein, and others), mechanisms of apoptosis, necroptosis, perforation of plasma membranes with kinase-like proteins of a mixed line, and ribonucleic acid neutralization, which ensure the development of innate immunity, are described. The main defense mechanisms that viruses have developed at the various stages of evolution are considered. The features of the development of the mechanisms of apoptosis and autophagy in a new coronavirus infection, which are associated with increased secretion of pro-inflammatory cytokines and chemokines, leading to severe damage to host cells, are given. It has been found that serum levels of several proteins formed during autophagy caused by SARS-CoV-2 can be used to predict disease severity. These include a protein associated with microtubules 1A/1B, a protein of sequestoma 1, and a protein of the cellular system of autophagy ― beclin-1. The multifaceted role of interferons in the inhibition of viral infection and the features of the violation of the activating functions of interferons in coronavirus infection are described.

About the authors

Alexander V. Moskalev

Military medical academy of S.M. Kirov

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0000-0002-3403-3850
SPIN-code: 8227-2647

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Boris Yu. Gumilevsky

Military Medical Academy of S.M. Kirov

Email: 172602a@gmail.com
SPIN-code: 3428-7704
Scopus Author ID: 6602391269
ResearcherId: J-1841-2017

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Vasiliy Ya. Apchel

Military Medical Academy of S.M. Kirov; A.I. Herzen Russian State Pedagogical University of the Ministry of Education and Science of the Russian Federation

Email: apchelvya@mail.com
ORCID iD: 0000-0001-7658-4856
SPIN-code: 4978-0785
Scopus Author ID: 6507529350
ResearcherId: Е-8190-2019

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vasiliy N. Tcygan

Military Medical Academy of S.M. Kirov

Email: vn-t@mail.ru
ORCID iD: 0000-0003-1199-0911
SPIN-code: 7215-6206

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

References

  1. Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. 2007. Vol. 449. P. 819–826. doi: 10.1038/nature06246
  2. Hornung V., Hartmann R., Ablasser A., Hopfner K.-P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids // Nat Rev Immunol. 2014. Vol. 14. P. 521–528. doi: 10.1038/nri3719
  3. Sun L., Wu J., Du F., et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway // Science. 2013. Vol. 339, No. 6121 P. 786–791. doi: 10.1126/science.1232458
  4. Silverman R.H. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response // J Virol. 2007. Vol. 81, No. 23. P. 12720–12729. doi: 10.1128/JVI.01471-07
  5. Thapa R.J., Ingram J.P., Ragan K.B., et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 674–681. doi: 10.1016/j.chom.2016.09.014
  6. Gitlin L., Barchet W., Gilfillan S., et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus // Proc Natl Acad Sci USA. 2006. Vol. 103, No. 22. P. 8459–8464. doi: 10.1073/pnas.0603082103
  7. Grove J., Marsh M. The cell biology of receptor-mediated virus entry // J Cell Biol. 2011. Vol. 195, No. 7. P. 1071–1082. doi: 10.1083/jcb.201108131
  8. Finlay B.B., McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens // Cells. 2006. Vol. 124, No. 4. P. 767–782. doi: 10.1016/j.cell.2006.01.034
  9. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system // Int Rev Immunol. 2011. Vol. 30, No. 1. P. 16–34. doi: 10.3109/08830185.2010.529976
  10. Cullen B.R., Cherry S., tenOever B.R. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? // Cell Host Microbe. 2013. Vol. 14, No. 4. P. 374–378. doi: 10.1016/j.chom.2013.09.011
  11. Zipfel C. Plant pattern-recognition receptors // Trends Immunol. 2014. Vol. 35, No. 7. P. 345–351. doi: 10.1016/j.it.2014.05.004
  12. Gay N.J., Gangloff M. Structure and function of Toll receptors and their ligands // Annu Rev Biochem. 2007. Vol. 76. P. 141–165. doi: 10.1146/annurev.biochem.76.060305.151318
  13. Trinchieri G., Sher A. Cooperation of Toll-like receptor signals in innate immune defence // Nat Rev Immunol. 2007. Vol. 7. P. 179–190. doi: 10.1038/nri2038
  14. Shroff A., Nazarko T.Y. The Molecular Interplay between Human Coronaviruses and Autophagy // Cells. 2021. Vol. 10, No. 8. P. 20–22. doi: 10.3390/cells10082022
  15. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function // Immunity. 2019. Vol. 50, No. 1. P. 37–50. doi: 10.1016/j.immuni.2018.12.027
  16. Ahmad L., Mostowy S., Sancho-Shimizu S. Autophagy-Virus Interplay: From Cell Biology to Human Disease // Front Cell Dev Biol. 2018. Vol. 19. Р. 155. doi: 10.3389/fcell.2018.00155
  17. Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology // J Immunol Res. 2021. Vol. 2021. ID 9914854. doi: 10.1155/2021/9914854
  18. Bowie A.G. TRIM-ing down Tolls // Nat Immunol. 2008. Vol. 9. P. 348–350. doi: 10.1038/ni0408-348
  19. Diner B.A., Lum K.K., Javitt A., Cristea M.L. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression // Mol Cell Proteomics. 2015. Vol. 14, No. 9. P. 2341–2356. doi: 10.1074/mcp.M114.047068
  20. Takata M.A., Gonçalves-Carneiro D., Zang T.M., et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA // Nature. 2017. Vol. 550. P. 124–127. doi: 10.1038/nature24039
  21. Chahal J.S., Qi J., Flint S.J. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells // PLoS Pathog. 2012. Vol. 8, No. 8. ID e1002853. doi: 10.1371/journal.ppat.1002853
  22. Towers G.J. The control of viral infection by tripartite motif proteins and cyclophilin A // Retrovirology. 2007. Vol. 4. P. 40–46. doi: 10.1186/1742-4690-4-40
  23. Hemann E.A., Green R., Turnbull J.B., et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus // Nat Immunol. 2019. Vol. 20. P. 1035–1045. doi: 10.1038/s41590-019-0408-z
  24. Wu J., Sun L., Chen X., et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA // Science. 2013. Vol. 339, No. 6121. P. 826–830. doi: 10.1126/science.1229963
  25. Kudchodkar S.B., Levine B. Viruses and autophagy // Rev Med Virol. 2009. Vol. 19, No. 6. P. 359–378. doi: 10.1002/rmv.630
  26. Kaiser S.M., Malik H.S., Emerman M. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein // Science. 2007. Vol. 316, No. 5832. P. 1756–1758. doi: 10.1126/science.1140579
  27. Ma Z., Damania B. The cGAS-STING defense pathway and its counteraction by viruses // Cell Host Microbe. 2016. Vol. 19, No. 2. P. 150–158. doi: 10.1016/j.chom.2016.01.010
  28. Maillard P.V., van der Veen A.G., Poirier E.Z., e Sousa C.R. Slicing and dicing viruses: antiviral RNA interference in mammals // EMBO J. 2019. Vol. 38, No. 8. ID e100941. doi: 10.15252/embj.2018100941
  29. Lee H.K., Lund J.M., Ramanathan B., et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells // Science. 2007. Vol. 315, No. 5817. P. 1398–1401. doi: 10.1126/science.1136880
  30. van Gent M., Braem S.G.E., de Jong A., et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling // PLoS Pathog. 2014. Vol. 10, No. 2. ID e1003960. doi: 10.1371/journal.ppat.1003960

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Moskalev A.V., Gumilevsky B.Y., Apchel V.Y., Tcygan V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies