THE DEFINITION OF THE TERM OF «VIRTUAL REALITY» IN THE CONTEXT OF MEDICAL REHABILITATION


Cite item

Full Text

Abstract

The extensive application of various types of biological feedback mechanisms for the purpose of medical rehabilitation, e.g. as exemplified by «immersion» of the patient in the synthetic («virtual», «enhanced») environment, poses an important problem concerning the terminology, definitions, identification of the differences, and the selection of such artificial realities. In the current Nomenclature of medical services introduced into the clinical practice by the Order of the Ministry of Health of the Russian Federation (No 1664n dated 27.12.2011), the following codes can be attributed to the items concerning the possible use of virtual environments: A19.03.001.014 «Training with biological feedback from the support reaction in patients presenting with spinal injury» or A19.03.001.017 «Training with biofeedback via the kinesiology image of the manner of motion in the patients suffering from spinal injury», etc. At present, the use of the virtual environments and objects for the purpose of relaxation which are yet not coded as the medical services is extensively practiced at the treatment-and-prophylactic establishments of the spa and health resort type. This brief review is perhaps the first or one of the first attempts to explicitly define and represent the multidisciplinary approach to the problem being analyzed in the context of medical rehabilitation with the consistent information synthesis. The aim of the present work was to provide rehabilitation medicine professionals and other specialists with the information pertaining to the interpretation of the materials having a bearing on the main line of these studies.

About the authors

O. V Kubryak

Federal state budgetary scientific institution «P.K. Anokhin Research Institute of Normal Physiology», Federal Agency for Scientific Organizations of the Russian Federation

Email: o.kubryak@nphys.ru
канд. биол. наук, зав. лабораторией физиологии функциональных состояний человека ФГБНУ «Научно-исследовательский институт нормальной физиологии им. П.К. Анохина», 125315, Москва, Российская Федерация 125315, Moscow, Russia

E. N Panova

Federal state budgetary scientific institution «P.K. Anokhin Research Institute of Normal Physiology», Federal Agency for Scientific Organizations of the Russian Federation

125315, Moscow, Russia

References

  1. Elkin P.L. Human factors engineering in HI: so what? Who cares? And what’s in it for you? Health Inform. Res. 2012; 18 (4): 237-41.
  2. Brathwaite B., Schreiber I. Challenges for Game Designers. Boston: Course Technology; 2009.
  3. Fullerton T. Game Design Workshop: a Playcentric Approach to Creating Innovative Games. Burlington: CRC Press; 2008.
  4. Кубряк О.В., Гроховский С.С., Исакова Е.В., Котов С.В. Биологическая обратная связь по опорной реакции: методология и терапевтические аспекты. М.: Маска; 2015
  5. Virtual reality society. 2017. Available at: https://www.vrs.org.uk (accessed 6 March 2017)
  6. Riener R., Harders M. Virtual Reality in Medicine. London: Springer Science & Business Media; 2012
  7. Мельников Л.Н. Виртуальная реальность: как это начиналось. Техника - молодежи. 2000; (3): 56-8.
  8. Мельников Л.Н., Еникеев К.А. Прибор и метод для нервно-психической релаксации. Мед. техника. 1978; (5): 28-31.
  9. Shull P.B., Damian D.D. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review. J. Neuroeng. Rehabil. 2015; (12): 59.
  10. Piggott L., Wagner S., Ziat M. Haptic neurorehabilitation and virtual reality for upper limb paralysis: a review. Crit. Rev. Biomed. Eng. 2016; 44 (1-2): 1-32.
  11. Chan J., Heath M. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration. Exp. Brain Res. 2017; 235 (4): 1041-51.
  12. Левик Ю.С. Система внутреннего представления в управлении движениями и организации сенсомоторного взаимодействия: Дисс. ... д-ра биол. наук. М.; 2006
  13. Hu F., Lu J., Zhang T. Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation. Hershey: IGI Global; 2016.
  14. Escobar-Castillejos D., Noguez J., Neri L., Magana A., Benes B. A review of simulators with haptic devices for medical training. J. Med. Syst. 2016; 40 (4): 104.
  15. Константинов К.В., Клименко В.М., Сизов В.В., Есимбаева В.Н., Мирошников Д.Б., Бурова В.В. Саморегуляция функционального состояния центральной нервной системы человека методом биоакус-тической коррекции. Биологическая обратная связь. 2000; (4): 7-15
  16. Virtual reality (VR). 2017. Availabe at: https://www.global.britannica.com/technology/virtual-reality (accessed 6 March 2017).
  17. Lledó L.D., Díez J.A., Bertomeu-Motos A., Ezquerro S., Badesa F.J., Sabater-Navarro J.M., García-Aracil N. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 2016; (8): 205.
  18. Афанасьев В.О. Модели структур и данных для решения задач управления поведением и взаимодействием объектов в индуцированной виртуальной среде. Космонавтика и ракетостроение. 2005; (2): 168-79.
  19. Воробьев Д.В., Сироткина А.А. Виртуальная реальность как категория социальной философии, или что такое виртуальная реальность? Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Социальные науки. 2008; (4): 89-94.
  20. Kubryak O. System mechanisms of regulation of human vertical posture stability and controllability. 2017. Available at: https://www.researchgate.net/profile/oleg_kubryak (accessed 6 March 2017)

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies