Displaying the cohomology of toric line bundles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

There is a standard approach to calculate the cohomology of torus-invariant sheaves$\mathcal{L}$ on a toric variety via the simplicial cohomology of the associated subsets$V(\mathcal{L})$ of the space $N_\mathbb{R}$ of 1-parameter subgroups of the torus.For a line bundle $\mathcal{L}$ represented by a formal difference $\Delta^+-\Delta^-$ of polyhedrain the character space $M_\mathbb{R}$, [1] contains a simpler formula for the cohomology of $\mathcal{L}$, replacing $V(\mathcal{L})$ by the set-theoretic difference $\Delta^- \setminus \Delta^+$.Here, we provide a short and direct proof of this formula.

Sobre autores

Klaus Altmann

Freie Universität Berlin, Institut für Mathematik

Email: izv@mi-ras.ru

David Ploog

Universität Hannover, Institut für Mathematik

Autor responsável pela correspondência
Email: izv@mi-ras.ru

Doctor of physico-mathematical sciences

Bibliografia

  1. K. Altmann, J. Buczynski, L. Kastner, A.-L. Winz, “Immaculate line bundles on toric varieties”, Pure Appl. Math. Q. (to appear)
  2. D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
  3. M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ecole Norm. Sup. (4), 3:4 (1970), 507–588
  4. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp.
  5. В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
  6. T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp.
  7. W. Fulton, Introduction to toric varieties, The 1989 W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
  8. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  9. Р. Ботт, Л. В. Ту, Дифференциальные формы в алгебраической топологии, Наука, М., 1989, 336 с.
  10. D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp.
  11. D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Altmann K., Ploog D., 2020

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).