Displaying the cohomology of toric line bundles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There is a standard approach to calculate the cohomology of torus-invariant sheaves$\mathcal{L}$ on a toric variety via the simplicial cohomology of the associated subsets$V(\mathcal{L})$ of the space $N_\mathbb{R}$ of 1-parameter subgroups of the torus.For a line bundle $\mathcal{L}$ represented by a formal difference $\Delta^+-\Delta^-$ of polyhedrain the character space $M_\mathbb{R}$, [1] contains a simpler formula for the cohomology of $\mathcal{L}$, replacing $V(\mathcal{L})$ by the set-theoretic difference $\Delta^- \setminus \Delta^+$.Here, we provide a short and direct proof of this formula.

About the authors

Klaus Altmann

Freie Universität Berlin, Institut für Mathematik

Email: izv@mi-ras.ru

David Ploog

Universität Hannover, Institut für Mathematik

Author for correspondence.
Email: izv@mi-ras.ru

Doctor of physico-mathematical sciences

References

  1. K. Altmann, J. Buczynski, L. Kastner, A.-L. Winz, “Immaculate line bundles on toric varieties”, Pure Appl. Math. Q. (to appear)
  2. D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp.
  3. M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ecole Norm. Sup. (4), 3:4 (1970), 507–588
  4. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973, viii+209 pp.
  5. В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
  6. T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp.
  7. W. Fulton, Introduction to toric varieties, The 1989 W. H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp.
  8. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  9. Р. Ботт, Л. В. Ту, Дифференциальные формы в алгебраической топологии, Наука, М., 1989, 336 с.
  10. D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp.
  11. D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149

Copyright (c) 2020 Altmann K., Ploog D.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies