Symmetries and conservation laws of the Liouville equation

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Symmetries and conservation laws of the Liouville equation are studied in the frames of the algebra-geometrical approach to partial differential equations.Bibliography: 9 titles.

Полный текст

Доступ закрыт

Об авторах

Виктор Викторович Жаринов

Математический институт им. В.А. Стеклова Российской академии наук

Email: zharinov@mi-ras.ru
доктор физико-математических наук, профессор

Список литературы

  1. I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics
  2. И. В. Волович, “Уравнения Боголюбова и функциональная механика”, ТМФ, 164:3 (2010), 354–362
  3. I. V. Volovich, “Functional stochastic classical mechanics”, $p$-Adic Numbers Ultrametric Anal. Appl., 7:1 (2015), 56–70
  4. Р. Курант, Уравнения с частными производными, Мир, М., 1964, 830 с.
  5. П. Олвер, Приложение групп Ли к дифференциальным уравнениям, Мир, М., 1989, 639 с.
  6. Симметрии и законы сохранения уравнений математической физики, ред. А. М. Виноградов, И. С. Красильщик, Факториал, М., 1997, 380 с.
  7. V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, Ser. Soviet East European Math., 9, World Sci. Publ., River Edge, NJ, 1992, x+360 pp.
  8. В. В. Жаринов, “Законы сохранения эволюционных систем”, ТМФ, 68:2 (1986), 163–171
  9. V. V. Zharinov, Dynamics of wave packets in the functional mechanics

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Жаринов В.В., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).