On the coprimeness relation from the viewpoint of monadic second-order logic

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let $\mathfrak{C}$ denote the structure of the natural numbers with thecoprimeness relation. We prove that for each non-zero natural number $n$,if a $\Pi^1_n$-set of natural numbers is closed under automorphismsof $\mathfrak{C}$, then it is definable in $\mathfrak{C}$ by a monadic$\Pi^1_n$-formula of the signature of $\mathfrak{C}$ having exactly $n$ setquantifiers.On the other hand, we observe that even a much weaker version of this property fails for certain expansions of $\mathfrak{C}$.

Авторлар туралы

Stanislav Speranski

Steklov Mathematical Institute of Russian Academy of Sciences

Email: katze.tail@gmail.com
Candidate of physico-mathematical sciences, no status

Fedor Pakhomov

Steklov Mathematical Institute of Russian Academy of Sciences; Ghent University

Email: pakhfn@gmail.com
Candidate of physico-mathematical sciences, Senior Researcher

Әдебиет тізімі

  1. D. Richard, “What are weak arithmetics?”, Theoret. Comput. Sci., 257:1-2 (2001), 17–29
  2. J. Y. Halpern, “Presburger arithmetic with unary predicates is $Pi_1^1$ complete”, J. Symbolic Logic, 56:2 (1991), 637–642
  3. S. O. Speranski, “A note on definability in fragments of arithmetic with free unary predicates”, Arch. Math. Logic, 52:5-6 (2013), 507–516
  4. A. Bès, D. Richard, “Undecidable extensions of Skolem arithmetic”, J. Symbolic Logic, 63:2 (1998), 379–401
  5. J. Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic, 14:2 (1949), 98–114
  6. A. Bès, “A survey of arithmetical definability”, A tribute to Maurice Boffa, Bull. Belg. Math. Soc. Simon Stevin, suppl., Soc. Math. Belgique, Brussels, 2001, 1–54
  7. S. O. Speranski, “Some new results in monadic second-order arithmetic”, Computability, 4:2 (2015), 159–174
  8. Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, М., 1972, 624 с.
  9. J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6:1-6 (1960), 66–92
  10. J. R. Büchi, “On a decision method in restricted second order arithmetic”, Logic, methodology and philosophy of science (1960), Stanford Univ. Press, Stanford, CA, 1962, 1–11

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Speranski S.O., Pakhomov F.N., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).