On the coprimeness relation from the viewpoint of monadic second-order logic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $\mathfrak{C}$ denote the structure of the natural numbers with thecoprimeness relation. We prove that for each non-zero natural number $n$,if a $\Pi^1_n$-set of natural numbers is closed under automorphismsof $\mathfrak{C}$, then it is definable in $\mathfrak{C}$ by a monadic$\Pi^1_n$-formula of the signature of $\mathfrak{C}$ having exactly $n$ setquantifiers.On the other hand, we observe that even a much weaker version of this property fails for certain expansions of $\mathfrak{C}$.

About the authors

Stanislav Olegovich Speranski

Steklov Mathematical Institute of Russian Academy of Sciences

Email: katze.tail@gmail.com
Candidate of physico-mathematical sciences, no status

Fedor Nikolaevich Pakhomov

Steklov Mathematical Institute of Russian Academy of Sciences; Ghent University

Email: pakhfn@gmail.com
Candidate of physico-mathematical sciences, Senior Researcher

References

  1. D. Richard, “What are weak arithmetics?”, Theoret. Comput. Sci., 257:1-2 (2001), 17–29
  2. J. Y. Halpern, “Presburger arithmetic with unary predicates is $Pi_1^1$ complete”, J. Symbolic Logic, 56:2 (1991), 637–642
  3. S. O. Speranski, “A note on definability in fragments of arithmetic with free unary predicates”, Arch. Math. Logic, 52:5-6 (2013), 507–516
  4. A. Bès, D. Richard, “Undecidable extensions of Skolem arithmetic”, J. Symbolic Logic, 63:2 (1998), 379–401
  5. J. Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic, 14:2 (1949), 98–114
  6. A. Bès, “A survey of arithmetical definability”, A tribute to Maurice Boffa, Bull. Belg. Math. Soc. Simon Stevin, suppl., Soc. Math. Belgique, Brussels, 2001, 1–54
  7. S. O. Speranski, “Some new results in monadic second-order arithmetic”, Computability, 4:2 (2015), 159–174
  8. Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, М., 1972, 624 с.
  9. J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6:1-6 (1960), 66–92
  10. J. R. Büchi, “On a decision method in restricted second order arithmetic”, Logic, methodology and philosophy of science (1960), Stanford Univ. Press, Stanford, CA, 1962, 1–11

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Speranski S.O., Pakhomov F.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).