On the coprimeness relation from the viewpoint of monadic second-order logic
- Authors: Speranski S.O.1, Pakhomov F.N.1,2
- 
							Affiliations: 
							- Steklov Mathematical Institute of Russian Academy of Sciences
- Ghent University
 
- Issue: Vol 86, No 6 (2022)
- Pages: 207-222
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133918
- DOI: https://doi.org/10.4213/im9340
- ID: 133918
Cite item
Abstract
About the authors
Stanislav Olegovich Speranski
Steklov Mathematical Institute of Russian Academy of Sciences
														Email: katze.tail@gmail.com
				                					                																			                								Candidate of physico-mathematical sciences, no status				                														
Fedor Nikolaevich Pakhomov
Steklov Mathematical Institute of Russian Academy of Sciences; Ghent University
														Email: pakhfn@gmail.com
				                					                																			                								Candidate of physico-mathematical sciences, Senior Researcher				                														
References
- D. Richard, “What are weak arithmetics?”, Theoret. Comput. Sci., 257:1-2 (2001), 17–29
- J. Y. Halpern, “Presburger arithmetic with unary predicates is $Pi_1^1$ complete”, J. Symbolic Logic, 56:2 (1991), 637–642
- S. O. Speranski, “A note on definability in fragments of arithmetic with free unary predicates”, Arch. Math. Logic, 52:5-6 (2013), 507–516
- A. Bès, D. Richard, “Undecidable extensions of Skolem arithmetic”, J. Symbolic Logic, 63:2 (1998), 379–401
- J. Robinson, “Definability and decision problems in arithmetic”, J. Symbolic Logic, 14:2 (1949), 98–114
- A. Bès, “A survey of arithmetical definability”, A tribute to Maurice Boffa, Bull. Belg. Math. Soc. Simon Stevin, suppl., Soc. Math. Belgique, Brussels, 2001, 1–54
- S. O. Speranski, “Some new results in monadic second-order arithmetic”, Computability, 4:2 (2015), 159–174
- Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, Мир, М., 1972, 624 с.
- J. R. Büchi, “Weak second-order arithmetic and finite automata”, Z. Math. Logik Grundlagen Math., 6:1-6 (1960), 66–92
- J. R. Büchi, “On a decision method in restricted second order arithmetic”, Logic, methodology and philosophy of science (1960), Stanford Univ. Press, Stanford, CA, 1962, 1–11
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					