Stringy $E$-functions of canonical toric Fano threefolds and their applications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let $\Delta$ be a $3$-dimensional lattice polytope containing exactly oneinterior lattice point. We give a simple combinatorial formula for computingthe stringy $E$-function of the $3$-dimensional canonical toric Fano variety$X_{\Delta}$ associated with $\Delta$. Using the stringyLibgober–Wood identity and our formula, we generalize the well-knowncombinatorial identity $\sum_{\substack{\theta \preceq \Delta\dim(\theta) =1}}v(\theta) \cdot v(\theta^*) = 24$ which holds for $3$-dimensional reflexive polytopes $\Delta$.

Sobre autores

Victor Batyrev

Mathematisches Institut, Universität Tübingen

Email: victor.batyrev@uni-tuebingen.de
Doctor of physico-mathematical sciences, Professor

Karin Schaller

Freie Universität Berlin

Bibliografia

  1. M. Reid, “Minimal models of canonical {$3$}-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180
  2. В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
  3. A. M. Kasprzyk, “Canonical toric Fano threefolds”, Canad. J. Math., 62:6 (2010), 1293–1309
  4. V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3:3 (1994), 493–535
  5. M. Kreuzer, H. Skarke, “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2:4 (1998), 853–871
  6. M. Beck, Beifang Chen, L. Fukshansky, C. Haase, A. Knutson, B. Reznick, S. Robins, A. Schürmann, “Problems from the Cottonwood Room”, Integer points in polyhedra – geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence, RI, 2005, 179–191
  7. V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929
  8. А. Г. Хованский, “Многогранники Ньютона и род полных пересечений”, Функц. анализ и его прил., 12:1 (1978), 51–61
  9. V. Batyrev, “The stringy Euler number of Calabi–Yau hypersurfaces in toric varieties and the Mavlyutov duality”, Pure Appl. Math. Q., 13:1 (2017), 1–47
  10. V. Batyrev, K. Schaller, “Stringy Chern classes of singular toric varieties and their applications”, Commun. Number Theory Phys., 11:1 (2017), 1–40
  11. L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261 (1985), 678–686
  12. V. V. Batyrev, “Stringy Hodge numbers of varieties with Gorenstein canonical singularities”, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1–32
  13. H. Skarke, “Weight systems for toric Calabi–Yau varieties and reflexivity of Newton polyhedra”, Modern Phys. Lett. A, 11:20 (1996), 1637–1652
  14. A. M. Kasprzyk, M. Kreuzer, B. Nill, “On the combinatorial classification of toric log del Pezzo surfaces”, LMS J. Comput. Math., 13 (2010), 33–46
  15. G. K. White, “Lattice tetrahedra”, Canad. J. Math., 16 (1964), 389–396
  16. A. Corti, V. Golyshev, “Hypergeometric equations and weighted projective spaces”, Sci. China Math., 54:8 (2011), 1577–1590
  17. A. S. Libgober, J. W. Wood, “Uniqueness of the complex structure on Kähler manifolds of certain homotopy types”, J. Differential Geom., 32:1 (1990), 139–154
  18. V. V. Batyrev, “Stringy Hodge numbers and Virasoro algebra”, Math. Res. Lett., 7:2 (2000), 155–164

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Batyrev V.V., Schaller K., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).