On the existence of a linear differential system with given values of the Perron exponent

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider linear differential systems with infinitely differentiable and, in general, unbounded coefficients on the semi-axis. We prove that the map assigning to a non-zero solution of such a system the value of the Perron exponent on thesolution can turn out to be an arbitrary continuousfunction which is constant along every line passing through zero in the solution space.

Авторлар туралы

Alexander Gargyants

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Email: gaaaric@gmail.com
without scientific degree, no status

Әдебиет тізімі

  1. Н. А. Изобов, Введение в теорию показателей Ляпунова, БГУ, Минск, 2006, 319 с.
  2. Б. Ф. Былов, Р. Э. Виноград, Д. М. Гробман, В. В. Немыцкий, Теория показателей Ляпунова и ее приложения к вопросам устойчивости, Наука, М., 1966, 576 с.
  3. Е. А. Барабанов, “Структура множества нижних показателей Перрона линейной дифференциальной системы”, Дифференц. уравнения, 22:11 (1986), 1843–1853
  4. Н. А. Изобов, “О мере множества решений линейной системы с наибольшим нижним показателем”, Дифференц. уравнения, 24:12 (1988), 2168–2170
  5. А. Г. Гаргянц, “К вопросу о типичности и существенности значений показателя Перрона неограниченных линейных систем”, Дифференц. уравнения, 49:11 (2013), 1505–1506
  6. В. В. Быков, “О классах Бэра ляпуновских инвариантов”, Матем. сб., 208:5 (2017), 38–62
  7. С. А. Мазаник, Преобразования Ляпунова линейных дифференциальных систем, БГУ, Минск, 2008, 175 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Гаргянц А.G., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).