Abstract fractional difference inclusions
- 作者: Kostić M.1, Koyuncuoğlu H.C.2, Velinov D.3
-
隶属关系:
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
- Izmir Katip Celebi University, Department of Engineering Sciences, Izmir, Turkey
- Department for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University of Skopje,Skopje, N. Macedonia
- 期: 卷 89, 编号 6 (2025)
- 页面: 85-104
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/358690
- DOI: https://doi.org/10.4213/im9611
- ID: 358690
如何引用文章
详细
almost periodic and almost automorphic type solutions to abstract fractional difference inclusions.
作者简介
Marko Kostić
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
Email: marco.s@verat.net
Halis Koyuncuoğlu
Izmir Katip Celebi University, Department of Engineering Sciences, Izmir, Turkey
Email: haliscan.koyuncuoglu@ikcu.edu.tr
Daniel Velinov
Department for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University of Skopje,Skopje, N. Macedonia
Email: velinovd@gf.ukim.edu.mk
参考
- L. Abadias, C. Lizama, “Almost automorphic mild solutions to fractional partial difference-differential equations”, Appl. Anal., 95:6 (2016), 1347–1369
- L. Abadias, C. Lizama, P. J. Miana, M. Pilar Velasco, “On well-posedness of vector-valued fractional differential-difference equations”, Discrete Cont. Dyn. Syst., 39:5 (2019), 2679–2708
- O. A. Almatroud, A. Hioual, A. Ouannas, G. Grassi, “On fractional-order discrete-time reaction diffusion systems”, Mathematics, 11:11 (2023), 2447, 16 pp.
- E. Alvarez, S. Diaz, C. Lizama, “Existence of $(N,lambda)$-periodic solutions for abstract fractional difference equations”, Mediterr. J. Math., 19:1 (2022), 47, 15 pp.
- D. Araya, R. Castro, C. Lizama, “Almost automorphic solutions of difference equations”, Adv. Difference Equ., 2009 (2009), 591380, 15 pp.
- F. M. Atici, P. W. Eloe, “Initial value problems in discrete fractional calculus”, Proc. Amer. Math. Soc., 137:3 (2009), 981–989
- F. M. Atici, P. W. Eloe, “Discrete fractional calculus with the nabla operator”, Electron. J. Qual. Theory Differ. Equ., 2009, Spec. ed. I (2009), 3, 12 pp.
- F. M. Atici, P. W. Eloe, “Two-point boundary value problems for finite fractional difference equations”, J. Difference Equ. Appl., 17:4 (2011), 445–456
- A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York, 1955, xiii+180 pp.
- Junfei Cao, B. Samet, Yong Zhou, “Asymptotically almost periodic mild solutions to a class of Weyl-like fractional difference equations”, Adv. Difference Equ., 2019 (2019), 371, 33 pp.
- M. Choquehuanca, J. G. Mesquita, A. Pereira, “Almost automorphic solutions of second-order equations involving time scales with boundary conditions”, Proc. Amer. Math. Soc., 151:3 (2023), 1055–1070
- T. Diagana, Almost automorphic type and almost periodic type functions in abstract spaces, Springer, Cham, 2013, xiv+303 pp.
- A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, Inc., New York, 1999, xii+313 pp.
- A. M. Fink, Almost periodic differential equations, Lecture Notes in Math., 377, Springer-Verlag, Berlin-New York, 1974, viii+336 pp.
- M. I. Gil', Difference equations in normed spaces. Stability and oscillations, North-Holland Math. Stud., 206, Elsevier Science B.V., Amsterdam, 2007, xvi+362 pp.
- C. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, Cham, 2015, xiii+556 pp.
- T. Hamadneh, A. Hioual,*O. Alsayyed, Y. A. Al-Khassawneh, A. Al-Husban, A. Ouannas, “The FitzHugh–Nagumo model described by fractional difference equations: stability and numerical simulation”, Axioms, 12:9 (2023), 806, 20 pp.
- Jia Wei He, C. Lizama, Yong Zhou, “The Cauchy problem for discrete time fractional evolution equations”, J. Comput. Appl. Math., 370 (2020), 112683, 15 pp.
- G. M. N'Guerekata, Almost automorphic and almost periodic functions in abstract spaces, Kluwer Acad. Publ., New York, 2001, x+138 pp.
- M. Kostic, Almost periodic and almost automorphic solutions to integro-differential equations, De Gruyter, Berlin, 2019, xli+329 pp.
- M. Kostic, Abstract degenerate Volterra integro-differential equations, Матем. ин-т САНУ, Београд, 2020, v+516 pp.
- M. Kostic, Selected topics in almost periodicity, De Gruyter Stud. Math., 84, De Gruyter, Berlin, 2022, xlviii+684 pp.
- M. Kostic, Metrical almost periodicity and applications to integro-differential equations, De Gruyter Stud. Math., 95, De Gruyter, Berlin, 2023, xxx+543 pp.
- M. Kostic, H. C. Koyuncuoğlu, “Multi-dimensional almost automorphic type sequences and applications”, Georgian Math. J., 31:3 (2024), 453–471
- C. Lizama, “The Poisson distribution, abstract fractional difference equations, and stability”, Proc. Amer. Math. Soc., 145:9 (2017), 3809–3827
- C. Lizama, M. Murillo-Arcila, C. Leal, “Lebesgue regularity for differential difference equations with fractional damping”, Math. Methods Appl. Sci., 41:7 (2018), 2535–2545
- S. Reich, I. Shafrir, “An existence theorem for a difference inclusion in general Banach spaces”, J. Math. Anal. Appl., 160:2 (1991), 406–412
- M. Vesely, Constructions of almost periodic sequences and functions and homogeneous linear difference and differential equations, PhD thesis, Masaryk Univ., Brno, 2011
- S. Zaidman, Almost-periodic functions in abstract spaces, Res. Notes in Math., 126, Pitman, Boston, MA, 1985, iii+133 pp.
- Shunian Zhang, “Almost periodic solutions of difference systems”, Chinese Sci. Bull., 43:24 (1998), 2041–2046
- Shunian Zhang, “Existence of almost periodic solutions for difference systems”, Ann. Differential Equations, 16:2 (2000), 184–206
补充文件
