Explicit estimate of the convergence rate in the Riemann localization principle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The convergence rate in the Riemann localization principle for trigonometric series is estimated.
S. A. Telyakovskii's result for integrable functions is refined.
Functions with $\operatorname{Lip}\alpha$ integral modulus of continuity and functions of bounded variation
are considered.

About the authors

Anton Yur'evich Popov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: aypopov.msu@yandex.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher

Tatyana Yurevna Semenova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Candidate of physico-mathematical sciences, Associate professor

References

  1. E. Hille, G. Klein, “Riemann's localization theorem for Fourier series”, Duke Math. J., 21:4 (1954), 587–591
  2. G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals. I”, Math. Z., 27:1 (1928), 565–606

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Popov A.Y., Semenova T.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).