On the representations of the $C^*$-algebra of singular integral operators on a complex contour with discontinuous semi-almost periodic coefficients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

$C^*$-algebra generated by one-dimensional singular integral operators on an unbounded complex contour is studied. The coefficients are allowed to have jump
discontinuities at the contour points and stabilize to almost periodic functions
on each arc extending to infinity. All primitive ideals of this algebra are
listed.

About the authors

Ilnur Vil'evich Baibulov

Saint Petersburg State University

Email: i_baibulov@mail.ru
without scientific degree, no status

References

  1. D. Sarason, “Toeplitz operators with semi-almost periodic symbols”, Duke Math. J., 44:2 (1977), 357–364
  2. A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Oper. Theory Adv. Appl., 131, Birkhäuser Verlag, Basel, 2002, xii+462 pp.
  3. A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, “The $C^*$-algebra of singular integral operators with semi-almost periodic coefficients”, J. Funct. Anal., 204:2 (2003), 445–484
  4. R. G. Douglas, Banach algebra techniques in operator theory, Pure Appl. Math., 49, Academic Press, New York–London, 1972, xvi+216 pp.
  5. A. Dynin, “Multivariable Wiener–Hopf operators. I. Representations”, Integral Equations Operator Theory, 9:4 (1986), 537–556
  6. D. P. Williams, Crossed products of $C^*$-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence, RI, 2007, xvi+528 pp.
  7. H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131
  8. A. Dynin, “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Nat. Acad. Sci. U.S.A., 75:10 (1978), 4668–4670
  9. V. Kasatkin, “On the spectrum of the algebra of singular integral operators with discontinuities in symbols in momenta and coordinates”, J. Math. Sci. (N.Y.), 172:4 (2011), 477–531
  10. A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific & Technical, Harlow, 1994, viii+504 pp.
  11. R. J. Archbold, J. S. Spielberg, “Topologically free actions and ideals in discrete $C^*$-dynamical systems”, Proc. Edinburgh Math. Soc. (2), 37:1 (1994), 119–124
  12. H. Takai, “On a duality for crossed products of $C^*$-algebras”, J. Funct. Anal., 19:1 (1975), 25–39

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Baibulov I.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).