$H^p$ spaces of separately $(\alpha, \beta)$ -harmonic functions in the unit polydisc
- Авторлар: Arsenović M.1, Gajić J.2, Mateljević M.1
-
Мекемелер:
- Department of Mathematics, University of Belgrade, Belgrade, Serbia
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Шығарылым: Том 89, № 5 (2025)
- Беттер: 3-31
- Бөлім: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/331259
- DOI: https://doi.org/10.4213/im9603
- ID: 331259
Дәйексөз келтіру
Аннотация
Авторлар туралы
Miloš Arsenović
Department of Mathematics, University of Belgrade, Belgrade, Serbia
Email: milos.arsenovic@matf.bg.ac.rs
ORCID iD: 0000-0002-5450-2407
Jelena Gajić
Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
Email: jelena.gajic@pmf.unibl.org
ORCID iD: 0000-0001-9732-1000
Doctor of physico-mathematical sciences, no status
Miodrag Mateljević
Department of Mathematics, University of Belgrade, Belgrade, Serbia
Email: miodrag@matf.bg.ac.rs
Әдебиет тізімі
- D. Geller, “Some results in $H^p$ theory for the Heisenberg group”, Duke Math. J., 47:2 (1980), 365–390
- P. Ahern, J. Bruna, C. Cascante, “$H^p$-theory for generalized $M$-harmonic functions in the unit ball”, Indiana Univ. Math. J., 45:1 (1996), 103–135
- M. Klintborg, A. Olofsson, “A series expansion for generalized harmonic functions”, Anal. Math. Phys., 11:3 (2021), 122, 28 pp.
- M. Arsenovic, J. Gajic, “Schwarz–Pick lemma for $(alpha, beta)$-harmonic functions in the unit disc”, J. Math. Anal. Appl., 539:1, Part 2 (2024), 128489, 12 pp.
- Shaolin Chen, M. Vuorinen, “Some properties of a class of elliptic partial differential operators”, J. Math. Anal. Appl., 431:2 (2015), 1124–1137
- A. Khalfallah, M. Mateljevic, M. Mhamdi, “Some properties of mappings admitting general Poisson representations”, Mediterr. J. Math., 18:5 (2021), 193, 19 pp.
- Meng Li, Xingdi Chen, “Schwarz lemma for solutions of the $alpha$-harmonic equation”, Bull. Malays. Math. Sci. Soc., 45:5 (2022), 2691–2713
- Peijin Li, A. Rasila, Zhi-Gang Wang, “On properties of solutions to the $alpha$-harmonic equation”, Complex Var. Elliptic Equ., 65:12 (2020), 1981–1997
- Peijin Li, Xiantao Wang, Qianhong Xiao, “Several properties of $alpha$-harmonic functions in the unit disk”, Monatsh. Math., 184:4 (2017), 627–640
- A. Olofsson, “Differential operators for a scale of Poisson type kernels in the unit disc”, J. Anal. Math., 123 (2014), 227–249
- A. Olofsson, J. Wittsten, “Poisson integrals for standard weighted Laplacians in the unit disc”, J. Math. Soc. Japan, 65:2 (2013), 447–486
- J. Marcinkiewicz, A. Zygmund, “On the summability of double Fourier series”, Fund. Math., 32 (1939), 122–132
- R. F. Gundy, E. M. Stein, “$H^p$ theory for the poly-disc”, Proc. Nat. Acad. Sci. U.S.A., 76:3 (1979), 1026–1029
- K. R. Shrestha, “Hardy spaces on the polydisk”, Eur. J. Pure Appl. Math., 9:3 (2016), 292–304
- E. M. Stein, “Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals”, Invent. Math., 74:1 (1983), 63–83
- A. P. Calderon, A. Zygmund, “Note on the boundary values of functions of several complex variables”, Contributions to Fourier analysis, Ann. of Math. Stud., 25, Princeton Univ. Press, Princeton, NJ, 1950, 145–165
- C. S. Davis, “Iterated limits in $N^ast(U^n)$”, Trans. Amer. Math. Soc., 178 (1973), 139–146
- B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234
- A. Zygmund, “On the summability of multiple Fourier series”, Amer. J. Math., 69 (1947), 836–850
Қосымша файлдар
