$H^p$ spaces of separately $(\alpha, \beta)$-harmonic functions in the unit polydisc

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove existence and uniqueness of a solution of the Dirichlet problem for separately $(\alpha, \beta)$-harmonic functions on $\mathbb D^n$ with boundary data in $C(\mathbb T^n)$ using $(\alpha, \beta)$-Poisson kernel $P_{\alpha, \beta} (z, \zeta)$. A characterization by hypergeometric functions of separately $(\alpha, \beta)$-harmonic functions which are also $m$-homogeneous is given, it is used to obtain series expansion of separately $(\alpha, \beta)$-harmonic functions. Basic $H^p$ theory of such functions is developed: integral representations by measures and $L^p$ functions on $\mathbb T^n$, norm and weak$^\ast$ convergence at the distinguished boundary $\mathbb T^n$. Weak $(1,1)$-type estimate for a restricted non-tangential maximal function $M_{A, B}^{\mathrm{NT}}$ is derived. We show that slice functions $u(z_1, …, z_k, \zeta_{k+1}, …, \zeta_n)$, where some of the variables are fixed, belong in the appropriate space of separately $(\alpha', \beta')$-harmonic functions of $k$ variables. We prove a Fatou type theorem on a.e. existence of restricted non-tangential limits for these functions and a corresponding result for unrestricted limit at a point in $\mathbb T^n$. Our results extend earlier results for $(\alpha, \beta)$-harmonic functions in the disc and for $n$-harmonic functions in $\mathbb D^n$.

About the authors

Miloš Arsenović

Department of Mathematics, University of Belgrade, Belgrade, Serbia

Email: milos.arsenovic@matf.bg.ac.rs
ORCID iD: 0000-0002-5450-2407

Jelena Gajić

Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

Email: jelena.gajic@pmf.unibl.org
ORCID iD: 0000-0001-9732-1000
Doctor of physico-mathematical sciences, no status

Miodrag Mateljević

Department of Mathematics, University of Belgrade, Belgrade, Serbia

Email: miodrag@matf.bg.ac.rs

References

  1. D. Geller, “Some results in $H^p$ theory for the Heisenberg group”, Duke Math. J., 47:2 (1980), 365–390
  2. P. Ahern, J. Bruna, C. Cascante, “$H^p$-theory for generalized $M$-harmonic functions in the unit ball”, Indiana Univ. Math. J., 45:1 (1996), 103–135
  3. M. Klintborg, A. Olofsson, “A series expansion for generalized harmonic functions”, Anal. Math. Phys., 11:3 (2021), 122, 28 pp.
  4. M. Arsenovic, J. Gajic, “Schwarz–Pick lemma for $(alpha, beta)$-harmonic functions in the unit disc”, J. Math. Anal. Appl., 539:1, Part 2 (2024), 128489, 12 pp.
  5. Shaolin Chen, M. Vuorinen, “Some properties of a class of elliptic partial differential operators”, J. Math. Anal. Appl., 431:2 (2015), 1124–1137
  6. A. Khalfallah, M. Mateljevic, M. Mhamdi, “Some properties of mappings admitting general Poisson representations”, Mediterr. J. Math., 18:5 (2021), 193, 19 pp.
  7. Meng Li, Xingdi Chen, “Schwarz lemma for solutions of the $alpha$-harmonic equation”, Bull. Malays. Math. Sci. Soc., 45:5 (2022), 2691–2713
  8. Peijin Li, A. Rasila, Zhi-Gang Wang, “On properties of solutions to the $alpha$-harmonic equation”, Complex Var. Elliptic Equ., 65:12 (2020), 1981–1997
  9. Peijin Li, Xiantao Wang, Qianhong Xiao, “Several properties of $alpha$-harmonic functions in the unit disk”, Monatsh. Math., 184:4 (2017), 627–640
  10. A. Olofsson, “Differential operators for a scale of Poisson type kernels in the unit disc”, J. Anal. Math., 123 (2014), 227–249
  11. A. Olofsson, J. Wittsten, “Poisson integrals for standard weighted Laplacians in the unit disc”, J. Math. Soc. Japan, 65:2 (2013), 447–486
  12. J. Marcinkiewicz, A. Zygmund, “On the summability of double Fourier series”, Fund. Math., 32 (1939), 122–132
  13. R. F. Gundy, E. M. Stein, “$H^p$ theory for the poly-disc”, Proc. Nat. Acad. Sci. U.S.A., 76:3 (1979), 1026–1029
  14. K. R. Shrestha, “Hardy spaces on the polydisk”, Eur. J. Pure Appl. Math., 9:3 (2016), 292–304
  15. E. M. Stein, “Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals”, Invent. Math., 74:1 (1983), 63–83
  16. A. P. Calderon, A. Zygmund, “Note on the boundary values of functions of several complex variables”, Contributions to Fourier analysis, Ann. of Math. Stud., 25, Princeton Univ. Press, Princeton, NJ, 1950, 145–165
  17. C. S. Davis, “Iterated limits in $N^ast(U^n)$”, Trans. Amer. Math. Soc., 178 (1973), 139–146
  18. B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234
  19. A. Zygmund, “On the summability of multiple Fourier series”, Amer. J. Math., 69 (1947), 836–850

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Arsenović M., Gajić J., Mateljević M.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).