Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let $X$ be a complex projective variety. Suppose that the group of birational automorphisms of $X$ contains finite subgroups isomorphic to $(\mathbb{Z}/N\mathbb{Z})^r$ for $r$ fixed and $N$ arbitrarily large. We show that $r$ does not exceed $2\dim(X)$. Moreover, the equality holds if and only if $X$ is birational to an abelian variety. We also show that an analogous result holds for groups of bimeromorphic automorphisms of compact Kähler spaces under some additional assumptions.

Sobre autores

Alexey Golota

Steklov Mathematical Institute of Russian Academy of Sciences

ORCID ID: 0000-0002-5632-3963
Scopus Author ID: 57219245520
Researcher ID: M-1425-2017
without scientific degree

Bibliografia

  1. D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
  2. M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991, xviii+618 pp.
  3. C. Birkar, “Singularities of linear systems and boundedness of Fano varieties”, Ann. of Math. (2), 193:2 (2021), 347–405
  4. E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
  5. S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. Ecole Norm. Sup. (4), 37:1 (2004), 45–76
  6. T. Bandman, Yu. G. Zarhin, “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246
  7. F. Campana, “Connexite rationnelle des varietes de Fano”, Ann. Sci. Ecole Norm. Sup. (4), 25:5 (1992), 539–545
  8. F. Campana, “Orbifolds, special varieties and classification theory: an appendix”, Ann. Inst. Fourier (Grenoble), 54:3 (2004), 631–665
  9. A. Fujiki, “Closedness of the Douady spaces of compact Kähler spaces”, Publ. Res. Inst. Math. Sci., 14:1 (1978/79), 1–52
  10. А. С. Голота, “Свойство Жордана для групп бимероморфных автоморфизмов компактных кэлеровых пространств размерности 3”, Матем. сб., 214:1 (2023), 31–42
  11. T. Graber, J. Harris, J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67
  12. H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer-Verlag, Berlin, 1984, xviii+249 pp.
  13. A. Höring, Th. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246
  14. A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264
  15. C. Jordan, “Memoire sur les equations differentielles lineaires à integrale algebrique”, J. Reine Angew. Math., 1878:84 (1878), 89–215
  16. Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
  17. J. Kollar, Y. Miyaoka, Sh. Mori, “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448
  18. D. I. Lieberman, “Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds”, Fonctions de plusieurs variables complexes, III, Sem. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 140–186
  19. J. Moraga, Kawamata log terminal singularities of full rank
  20. J. Moraga, “Fano-type surfaces with large cyclic automorphisms”, Forum Math. Sigma, 9 (2021), e54, 27 pp.
  21. J. Moraga, On a toroidalization of klt singularities
  22. I. Mundet i Riera, “Discrete degree of symmetry of manifolds”, Transform. Groups, 2024, 1–38, Publ. online
  23. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
  24. Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
  25. Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
  26. Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
  27. Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
  28. Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий”, Матем. сб., 213:12 (2022), 86–108
  29. G. R. Robinson, “On linear groups”, J. Algebra, 131:2 (1990), 527–534
  30. J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
  31. H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14 (1974), 1–28
  32. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
  33. D. Wright, “Abelian subgroups of $operatorname{Aut}_{k}(k[X,Y])$ and applications to actions on the affine plane”, Illinois J. Math., 23:4 (1979), 579–634
  34. Jinsong Xu, Finite $p$-groups of birational automorphisms and characterizations of rational varieties
  35. Jinsong Xu, “A remark on the rank of finite $p$-groups of birational automorphisms”, C. R. Math. Acad. Sci. Paris, 358:7 (2020), 827–829
  36. Yu. G. Zarhin, “Theta groups and products of Abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Голота А.S., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).