Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps
- Authors: Golota A.S.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 88, No 5 (2024)
- Pages: 47-66
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/265537
- DOI: https://doi.org/10.4213/im9568
- ID: 265537
Cite item
Abstract
Let $X$ be a complex projective variety. Suppose that the group of birational automorphisms of $X$ contains finite subgroups isomorphic to $(\mathbb{Z}/N\mathbb{Z})^r$ for $r$ fixed and $N$ arbitrarily large. We show that $r$ does not exceed $2\dim(X)$. Moreover, the equality holds if and only if $X$ is birational to an abelian variety. We also show that an analogous result holds for groups of bimeromorphic automorphisms of compact Kähler spaces under some additional assumptions.
About the authors
Alexey Sergeevich Golota
Steklov Mathematical Institute of Russian Academy of Sciences
ORCID iD: 0000-0002-5632-3963
Scopus Author ID: 57219245520
ResearcherId: M-1425-2017
without scientific degree
References
- D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
- M. Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991, xviii+618 pp.
- C. Birkar, “Singularities of linear systems and boundedness of Fano varieties”, Ann. of Math. (2), 193:2 (2021), 347–405
- E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
- S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. Ecole Norm. Sup. (4), 37:1 (2004), 45–76
- T. Bandman, Yu. G. Zarhin, “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246
- F. Campana, “Connexite rationnelle des varietes de Fano”, Ann. Sci. Ecole Norm. Sup. (4), 25:5 (1992), 539–545
- F. Campana, “Orbifolds, special varieties and classification theory: an appendix”, Ann. Inst. Fourier (Grenoble), 54:3 (2004), 631–665
- A. Fujiki, “Closedness of the Douady spaces of compact Kähler spaces”, Publ. Res. Inst. Math. Sci., 14:1 (1978/79), 1–52
- А. С. Голота, “Свойство Жордана для групп бимероморфных автоморфизмов компактных кэлеровых пространств размерности 3”, Матем. сб., 214:1 (2023), 31–42
- T. Graber, J. Harris, J. Starr, “Families of rationally connected varieties”, J. Amer. Math. Soc., 16:1 (2003), 57–67
- H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer-Verlag, Berlin, 1984, xviii+249 pp.
- A. Höring, Th. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246
- A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264
- C. Jordan, “Memoire sur les equations differentielles lineaires à integrale algebrique”, J. Reine Angew. Math., 1878:84 (1878), 89–215
- Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
- J. Kollar, Y. Miyaoka, Sh. Mori, “Rationally connected varieties”, J. Algebraic Geom., 1:3 (1992), 429–448
- D. I. Lieberman, “Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds”, Fonctions de plusieurs variables complexes, III, Sem. François Norguet, 1975–1977, Lecture Notes in Math., 670, Springer, Berlin, 1978, 140–186
- J. Moraga, Kawamata log terminal singularities of full rank
- J. Moraga, “Fano-type surfaces with large cyclic automorphisms”, Forum Math. Sigma, 9 (2021), e54, 27 pp.
- J. Moraga, On a toroidalization of klt singularities
- I. Mundet i Riera, “Discrete degree of symmetry of manifolds”, Transform. Groups, 2024, 1–38, Publ. online
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
- Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
- Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
- Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов неунилинейчатых трехмерных кэлеровых многообразий”, Матем. сб., 213:12 (2022), 86–108
- G. R. Robinson, “On linear groups”, J. Algebra, 131:2 (1990), 527–534
- J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
- H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14 (1974), 1–28
- K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
- D. Wright, “Abelian subgroups of $operatorname{Aut}_{k}(k[X,Y])$ and applications to actions on the affine plane”, Illinois J. Math., 23:4 (1979), 579–634
- Jinsong Xu, Finite $p$-groups of birational automorphisms and characterizations of rational varieties
- Jinsong Xu, “A remark on the rank of finite $p$-groups of birational automorphisms”, C. R. Math. Acad. Sci. Paris, 358:7 (2020), 827–829
- Yu. G. Zarhin, “Theta groups and products of Abelian and rational varieties”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 299–304
Supplementary files
