Models of representations for classical series of Lie algebras
- Authors: Artamonov D.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 88, No 5 (2024)
- Pages: 3-46
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/265536
- DOI: https://doi.org/10.4213/im9557
- ID: 265536
Cite item
Abstract
About the authors
Dmitrii Vyacheslavovich Artamonov
Lomonosov Moscow State University
Email: artamonov.dmitri@gmail.com
ORCID iD: 0000-0001-5921-1513
Candidate of physico-mathematical sciences, Associate professor
References
- W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp.
- W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp.
- Jing-Song Huang, Chen-Bo Zhu, “Weyl's construction and tensor power decomposition for $G_2$ ”, Proc. Amer. Math. Soc., 127:3 (1999), 925–934
- G. E. Baird, L. C. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466
- W. J. Holman, III, “Representation theory of $SP(4)$ and $SO(5)$”, J. Math. Phys., 10 (1969), 1710–1717
- O. Castaños, E. Chacon, M. Moshinsky, C. Quesne, “Boson realization of $operatorname{sp}(4)$. I. The matrix formulation”, J. Math. Phys., 26:9 (1985), 2107–2123
- O. Castaños, P. Kramer, M. Moshinsky, “Boson realization of $operatorname{sp}(4,R)$. II. The generating kernel formulation”, J. Math. Phys., 27:4 (1986), 924–935
- J. P. Draayer, A. I. Georgieva, M. I. Ivanov, “Deformations of the boson $sp(4,R)$ representation and its subalgebras”, J. Phys. A, 34:14 (2001), 2999–3014
- Д. П. Желобенко, Компактные группы Ли и их представления, 2-е доп. изд., МЦНМО, М., 2007, 552 с.
- L. C. Biedenharn, D. E. Flath, “On the structure of tensor operators in SU3”, Comm. Math. Phys., 93:2 (1984), 143–169
- D. E. Flath, “On $mathfrak{so}_8$ and tensor operators of $mathfrak{sl}_3$”, Bull. Amer. Math. Soc. (N.S.), 10:1 (1984), 97–100
- И. М. Гельфанд, А. В. Зелевинский, “Модели представлений классических групп и их скрытые симметрии”, Функц. анализ и его прил., 18:3 (1984), 14–31
- Э. Б. Винберг, В. Л. Попов, “Об одном классе квазиоднородных аффинных многообразий”, Изв. АН СССР. Сер. матем., 36:4 (1972), 749–764
- D. V. Artamonov, “A functional realization of the Gelfand–Tsetlin base”, Изв. РАН. Сер. матем., 87:6 (2023), 3–34
- D. V. Artamonov, “Antisymmetrization of the Gel'fand–Kapranov–Zelevinskij systems ”, J. Math. Sci. (N.Y.), 255:5 (2021), 535–542
- И. М. Гельфанд, М. И. Граев, В. С. Ретах, “Общие гипергеометрические системы уравнений и ряды гипергеометрического типа”, УМН, 47:4(286) (1992), 3–82
- Н. Я. Виленкин, Специальные функции и теория представлений групп, Наука, М., 1965, 588 с.
- Д. В. Артамонов, “Формулы вычисления $3j$-символов для представлений алгебры Ли $mathfrak{gl}_3$ в базисе Гельфанда–Цетлина”, Сиб. матем. журн., 63:4 (2022), 717–735
- Д. В. Артамонов, “Классические $6j$-символы конечномерных представлений алгебры $mathfrak{gl}_3$”, ТМФ, 216:1 (2023), 3–19
- Д. В. Артамонов, “Базис типа Гельфанда–Цетлина для алгебры $mathfrak{sp}_4$ и гипергеометрические функции”, ТМФ, 206:3 (2021), 279–294
- Д. В. Артамонов, “Функциональный подход к базису типа Гельфанда–Цетлина для алгебры $mathfrak{o}_5$”, ТМФ, 211:1 (2022), 3–22
- А. И. Молев, Янгианы и классические алгебры Ли, МЦНМО, М., 2009, 534 с.
- A. Berenstein, A. Zelevinsky, “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143:1 (2001), 77–128
- E. Feigin, G. Fourier, P. Littelmann, “PBW filtration and bases for irreducible modules in type $mathsf A_n$”, Transform. Groups, 16:1 (2011), 71–89
- A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On a matrix element representation of the GKZ hypergeometric functions”, Lett. Math. Phys., 113:2 (2023), 43, 25 pp.
- E. Miller, B. Sturmfels, Combinatorial commutative algebra, Grad. Texts in Math., 227, Springer-Verlag, New York, 2005, xiv+417 pp.
- Ф. Р. Гантмахер, Теория матриц, 3-е изд., Наука, М., 1967, 576 с.
- А. Д. Брюно, Степенная геометрия в алгебраических и дифференциальных уравнениях, Физматлит, М., 1998, 288 с.
- M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000, viii+254 pp.
- Xin Fang, G. Fourier, P. Littelmann, “On toric degenerations of flag varieties”, Representation theory–current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc. (EMS), Zürich, 2017, 187–232
- M. Kogan, E. Miller, “Toric degeneration of Schubert varieties and Gelfand–Tsetlin polytopes”, Adv. Math., 193:1 (2005), 1–17
- I. Makhlin, “Gelfanf–Tsetlin degenerations of representations and flag varieties”, Transform. Groups, 27:2 (2022), 563–596
Supplementary files
