Алгебраическая теорема де Рама и функция Бейкера–Ахиезера

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для случая алгебраических кривых (компактных римановых поверхностей) показано, что группа когомологий де Рама $H^1_{\mathrm{dR}}(X,\mathbb{C})$ римановой поверхности $X$ рода $g$ имеет естественную структуру симплектического векторного пространства. Выбор неспециального эффективного дивизора $D$ степени $g$ на $X$ задает симплектический базис $H^1_{\mathrm{dR}}(X,\mathbb{C})$, состоящий из голоморфных дифференциалов и дифференциалов второго рода с полюсами в $D$. Этот результат, алгебраическая теорема де Рама, позволяет описать касательное пространство к многообразиям Пикара и Якоби римановой поверхности $X$ в терминах дифференциалов второго рода и определить естественные векторные поля на многообразии Якоби, отвечающие движению точек дивизора $D$. В терминах формализма Лакса на алгебраических кривых эти векторные поля соответствуют уравнениям Дубровина в теории интегрируемых систем, а функция Бейкера–Ахиезера естественным образом получаетсяинтегрированием вдоль интегральных кривых.Библиография: 14 наименований.

Об авторах

Игорь Моисеевич Кричевер

Columbia University; Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"

Автор, ответственный за переписку.
Email: krichev@math.columbia.edu
ORCID iD: 0000-0002-7173-6272
Scopus Author ID: 6603725451
ResearcherId: AAJ-8553-2021
доктор физико-математических наук, профессор

Леон Арменович Тахтаджян

Department of Mathematics, Stony Brook University; Международный математический институт им. Л. Эйлера

Email: leontak@math.stonybrook.edu
доктор физико-математических наук, ведущий научный сотрудник

Список литературы

  1. W. V. D. Hodge, M. F. Atiyah, “Integrals of the second kind on an algebraic variety”, Ann. of Math. (2), 62 (1955), 56–91
  2. A. Grothendieck, “On the de Rham cohomology of algebraic varieties”, Inst. Hautes Etudes Sci. Publ. Math., 29 (1966), 95–103
  3. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.
  4. Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986, 528 с.
  5. I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269
  6. I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752
  7. Б. А. Дубровин, “Периодическая задача для уравнения Кортевега–де Фриза в классе конечнозонных потенциалов”, Функц. анализ и его прил., 9:3 (1975), 41–51
  8. И. М. Кричевер, “Интегрирование нелинейных уравнений методами алгебраической геометрии”, Функц. анализ и его прил., 11:1 (1977), 15–31
  9. О. Форстер, Римановы поверхности, Мир, М., 1980, 248 с.
  10. К. Шевалле, Введение в теорию алгебраических функций от одной переменной, Физматгиз, М., 1959, 334 с.
  11. M. Eichler, Introduction to the theory of algebraic numbers and functions, Transl. from the German, Pure Appl. Math., 23, Academic Press, New York–London, 1966, xiv+324 pp.
  12. Л. А. Тахтаджян, “Квантовые теории поля на алгебраических кривых. I. Аддитивные бозоны”, Изв. РАН. Сер. матем., 77:2 (2013), 165–196
  13. K. Iwasawa, Algebraic functions, Transl. from the Japan., Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993, xxii+287 pp.
  14. И. Кра, Автоморфные формы и клейновы группы, Мир, М., 1975, 296 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кричевер И.М., Тахтаджян Л.А., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).