Asymptotics of solutions of a modified Whitham equation with surface tension

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the large-time behaviour of solutions of the Cauchy problemfor a modified Whitham equation,$$\begin{cases}u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, &(t,x) \in\mathbb{R}^2,u(0,x)=u_0(x), &x\in \mathbb{R},\end{cases}$$where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda(-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is givenby the symbol$$\Lambda (\xi)=a^{-{1}/{2}}\xi(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi} }-1)$$with a parameter $a>0$. This symbol corresponds to the total dispersionrelation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero($\int_{\mathbb{R}}u_0(x) dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap\mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geq 22$,we prove the existence of a global-in-time solution and describe itslarge-time asymptotic behaviour.

Sobre autores

Pavel Naumkin

National Autonomous University of Mexico, Institute of Mathematics

Email: pavelni@matmor.unam.mx

Bibliografia

  1. G. B. Whitham, “Variational methods and applications to water waves”, Hyperbolic equations and waves (Rencontres, Battelle Res. Inst., Seattle, WA, 1968), Springer, Berlin, 1970, 153–172
  2. Дж. Б. Уизем, Линейные и нелинейные волны, Мир, М., 1977, 624 с.
  3. S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141
  4. I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp.
  5. I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523
  6. P. I. Naumkin, I. A. Shishmarev, Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monogr., 133, Amer. Math. Soc., Providence, RI, 1994, x+289 pp.
  7. J. Shatah, “Global existence of small solutions to nonlinear evolution equations”, J. Differential Equations, 46:3 (1982), 409–425
  8. N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincare Phys. Theor., 48:1 (1988), 17–37
  9. N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028
  10. N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95
  11. N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377
  12. N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp.
  13. A. P. Calderon, R. Vaillancourt, “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A., 69:5 (1972), 1185–1187
  14. R. R. Coifman, Y. Meyer, Au delà des operateurs pseudo-differentiels, Asterisque, 57, Soc. Math. France, Paris, 1978, i+185 pp.
  15. H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131
  16. I. L. Hwang, “The $L^2$-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc., 302:1 (1987), 55–76
  17. М. В. Федорюк, Асимптотика. Интегралы и ряды, Наука, М., 1987, 544 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Наумкин П.I., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).