Asymptotics of solutions of a modified Whitham equation with surface tension
- Autores: Naumkin P.I.1
-
Afiliações:
- National Autonomous University of Mexico, Institute of Mathematics
- Edição: Volume 83, Nº 2 (2019)
- Páginas: 174-203
- Seção: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/142311
- DOI: https://doi.org/10.4213/im8673
- ID: 142311
Citar
Resumo
We study the large-time behaviour of solutions of the Cauchy problemfor a modified Whitham equation,$$\begin{cases}u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, &(t,x) \in\mathbb{R}^2,u(0,x)=u_0(x), &x\in \mathbb{R},\end{cases}$$where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda(-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is givenby the symbol$$\Lambda (\xi)=a^{-{1}/{2}}\xi(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi} }-1)$$with a parameter $a>0$. This symbol corresponds to the total dispersionrelation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero($\int_{\mathbb{R}}u_0(x) dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap\mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geq 22$,we prove the existence of a global-in-time solution and describe itslarge-time asymptotic behaviour.
Palavras-chave
Sobre autores
Pavel Naumkin
National Autonomous University of Mexico, Institute of Mathematics
Email: pavelni@matmor.unam.mx
Bibliografia
- G. B. Whitham, “Variational methods and applications to water waves”, Hyperbolic equations and waves (Rencontres, Battelle Res. Inst., Seattle, WA, 1968), Springer, Berlin, 1970, 153–172
- Дж. Б. Уизем, Линейные и нелинейные волны, Мир, М., 1977, 624 с.
- S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141
- I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp.
- I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523
- P. I. Naumkin, I. A. Shishmarev, Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monogr., 133, Amer. Math. Soc., Providence, RI, 1994, x+289 pp.
- J. Shatah, “Global existence of small solutions to nonlinear evolution equations”, J. Differential Equations, 46:3 (1982), 409–425
- N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincare Phys. Theor., 48:1 (1988), 17–37
- N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028
- N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95
- N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377
- N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp.
- A. P. Calderon, R. Vaillancourt, “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A., 69:5 (1972), 1185–1187
- R. R. Coifman, Y. Meyer, Au delà des operateurs pseudo-differentiels, Asterisque, 57, Soc. Math. France, Paris, 1978, i+185 pp.
- H. O. Cordes, “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131
- I. L. Hwang, “The $L^2$-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc., 302:1 (1987), 55–76
- М. В. Федорюк, Асимптотика. Интегралы и ряды, Наука, М., 1987, 544 с.
Arquivos suplementares
