Interior estimates for solutions of linear elliptic inequalities

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the wedge of solutions of the inequality $A(u) \ge 0$, where $A$ is a linear elliptic operator of order $2m$ acting on functions \linebreak of $n$ variables. We establish interior estimates of the form $\|u; W_p^{2m-1}(\omega)\| \le C(\omega,\Omega) \|u;L(\Omega)\|$ for the elements of this wedge, where $\omega$ is a compact subdomain of $\Omega$, $W_p^{2 m-1}(\omega)$ is the Sobolev space, $p (n-1) < n$, $L(\Omega)$ is the Lebesgue space of integrable functions, and the constant $C(\omega,\Omega)$ is independent of $u$.

About the authors

Vladimir Stepanovich Klimov

P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: VSK76@list.ru

References

  1. L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp.
  2. В. А. Малышев, “Нелинейные теоремы вложения”, Алгебра и анализ, 5:6 (1993), 1–38
  3. С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., Наука, М., 1988, 334 с.
  4. С. М. Никольский, Приближение функций многих переменных и теоремы вложения, 2-е изд., Наука, М., 1977, 455 с.
  5. Ya. Roitberg, Elliptic boundary value problems in the spaces of distributions, Math. Appl., 384, Kluwer Acad. Publ., Dordrecht, 1996, xii+415 pp.
  6. Ю. П. Красовский, “Выделение особенностей у функции Грина”, Изв. АН СССР Сер. матем., 31:5 (1967), 977–1010
  7. В. А. Солонников, “О матрицах Грина для эллиптических краевых задач. I”, Краевые задачи математической физики. 6, Тр. МИАН СССР, 110, 1970, 107–145
  8. М. А. Красносельский, П. П. Забрейко, Е. И. Пустыльник, П. Е. Соболевский, Интегральные операторы в пространствах суммируемых функций, Наука, М., 1966, 499 с.
  9. Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
  10. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Теория распределений и анализ Фурье, Мир, М., 1986, 464 с.
  11. А. Садуллаев, Р. Мадрахимов, “Гладкость субгармонических функций”, Матем. сб., 181:2 (1990), 167–182
  12. К. Морен, Методы гильбертова пространства, Мир, М., 1965, 570 с.
  13. М. Л. Гольдман, “О вложении обобщенных пространств Никольского–Бесова в пространства Лоренца”, Исследования по теории функций многих действительных переменных и приближению функций, Сборник статей. Посвящается академику Сергею Михайловичу Никольскому к его восьмидесятилетию, Тр. МИАН СССР, 172, 1985, 128–139
  14. В. С. Климов, “Нетривиальные решения краевых задач для полулинейных эллиптических уравнений”, Изв. АН СССР. Сер. матем., 35:2 (1971), 428–439
  15. В. С. Климов, А. Н. Павленко, “Обратные функциональные неравенства и их приложения к нелинейным эллиптическим краевым задачам”, Сиб. матем. журн., 42:4 (2001), 781–795

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Климов В.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».