On Jutila's integral in the circle problem
- Authors: Korolev M.A.1, Popov D.A.2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
- Issue: Vol 86, No 3 (2022)
- Pages: 3-46
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/142253
- DOI: https://doi.org/10.4213/im9155
- ID: 142253
Cite item
Abstract
About the authors
Maxim Aleksandrovich Korolev
Steklov Mathematical Institute of Russian Academy of Sciences
Email: hardy_ramanujan@mail.ru
Doctor of physico-mathematical sciences, no status
Dmitrii Aleksandrovich Popov
Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical BiologyDoctor of physico-mathematical sciences, Senior Researcher
References
- A. Ivic̀, Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465
- M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 186 (1984), 23–30
- Д. А. Попов, “Проблема круга и спектр оператора Лапласа на замкнутых двумерных многообразиях”, УМН, 74:5(449) (2019), 145–162
- W. G. Nowak, “Lattice points in a circle: an improved mean-square asymptotics”, Acta Arith., 113:3 (2004), 259–272
- Kai-Man Tsang, “Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function”, Sci. China Math., 53:9 (2010), 2561–2572
- Г. М. Фихтенгольц, Курс дифференциального и интегрального исчисления, т. 1, 6-е изд., Наука, М., 1966, 608 с.
- A. Ivic, The Riemann zeta-function. Theory and applications, Reprint of the 1985 original, Dover Publ., Inc., Mineola, NY, 2003, xxii+517 pp.
- W. Sierpinski, “Sur la sommation de la serie $sum_{a
- M. Kühleitner, “On a question of A. Schinzel concerning the sum $sum_{nle x}(r(n))^{2}$”, Österreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost, 1992), Grazer Math. Ber., 318, Karl-Franzens-Univ. Graz, Graz, 1993, 63–67
- F. Chamizo, “Correlated sums of $r(n)$”, J. Math. Soc. Japan, 51:1 (1999), 237–252
- A. Selberg, On the remainder term in the lattice point problem of the circle
- D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415
- К. Чандрасекхаран, Арифметические функции, Наука, М., 1975, 272 с.
- А. А. Карацуба, Основы аналитической теории чисел, 2-е изд., Наука, М., 1983, 240 с.
- С. М. Воронин, А. А. Карацуба, Дзета-функция Римана, Физматлит, М., 1994, 376 с.
Supplementary files
