Renormalization group transformation in the generalized fermionic hierarchical model
- Authors: Missarov M.D.1, Khajrullin D.A.1
-
Affiliations:
- Kazan (Volga Region) Federal University
- Issue: Vol 87, No 5 (2023)
- Pages: 164-176
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/140435
- DOI: https://doi.org/10.4213/im9371
- ID: 140435
Cite item
Abstract
Full Text

About the authors
Mukadas Dmukhtasibovich Missarov
Kazan (Volga Region) Federal University
Email: Moukadas.Missarov@kpfu.ru
Doctor of physico-mathematical sciences, Professor
Dmitrii Airatovich Khajrullin
Kazan (Volga Region) Federal University
Email: dimahajrullin@outlook.com
References
- F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet”, Comm. Math. Phys., 12:2 (1969), 91–107
- Я. Г. Синай, Теория фазовых переходов: строгие результаты, Наука, М., 1980, 280 с.
- Э. Ю. Лернер, М. Д. Миссаров, “Скалярные модели $p$-адической квантовой теории поля и иерархическая модель”, ТМФ, 78:2 (1989), 248–257
- I. V. Volovich, “$p$-adic string”, Classical Quantum Gravity, 4:4 (1987), L83–L87
- B. C. Владимиров, И. В. Волович, Е. И. Зеленов, $p$-адический анализ и математическая физика, Наука, М., 1994, 352 с.
- B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17
- M. D. Missarov, “Renormalization group solution of fermionic Dyson model”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 151–166
- М. Д. Миссаров, А. Ф. Шамсутдинов, “Зонная структура потока ренормализационной группы в фермионной иерархической модели”, ТМФ, 194:3 (2018), 436–444
- M. D. Missarov, “$p$-adic renormalization group solutions and the Euclidean renormalization group conjectures”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 109–114
- M. D. Missarov, “New variant of the fermionic model on the hierarchical two-dimensional lattice”, $p$-Adic Numbers Ultrametric Anal. Appl., 12:2 (2020), 163–170
Supplementary files
