On the Karatsuba divisor problem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain an upper bound for the sum$$\Phi_a(x) = \sum_{p\le x}\frac{1}{\tau(p+a)},$$where $\tau(n)$ is the divisor function, $a\ge 1$ is a fixed integer, and $p$ runs through primes up to $x$.

About the authors

Vitalii Victorovich Iudelevich

Lomonosov Moscow State University

without scientific degree, no status

References

  1. E. C. Titchmarsh, “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429
  2. Ю. В. Линник, “Новые варианты и применения дисперсионного метода в бинарных аддитивных задачах”, Докл. АН СССР, 137:6 (1961), 1299–1302
  3. G. Rodriquez, “Sul problema dei divisori di Titchmarsh”, Boll. Un. Mat. Ital. (3), 20 (1965), 358–366
  4. H. Halberstam, “Footnote to the Titchmarsh–Linnik divisor problem”, Proc. Amer. Math. Soc., 18 (1967), 187–188
  5. E. Bombieri, J. B. Friedlander, H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math., 156:3-4 (1986), 203–251
  6. E. Fouvry, “Sur le probleme des diviseurs de Titchmarsh”, J. Reine Angew. Math., 1985:357 (1985), 51–76
  7. S. Drappeau, B. Topacogullari, “Combinatorial identities and Titchmarsh's divisor problem for multiplicative functions”, Algebra Number Theory, 13:10 (2019), 2383–2425
  8. S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84
  9. M. A. Korolev, “On Karatsuba's problem concerning the divisor function”, Monatsh. Math., 168:3-4 (2012), 403–441
  10. V. Kowalenko, “Properties and applications of the reciprocal logarithm numbers”, Acta Appl. Math., 109:2 (2010), 413–437
  11. С. М. Воронин, А. А. Карацуба, Дзета-функция Римана, Физматлит, М., 1994, 376 с.
  12. А. А. Карацуба, Основы аналитической теории чисел, Наука, М., 1975, 183 с.
  13. H. Halberstam, H.-E. Richert, Sieve methods, ed. Repint of the 1974 original, Dover Publ., Inc., Mineola, NY, 2011, 490 pp.
  14. J. Friedlander, H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Publ., 57, Amer. Math. Soc., Providence, RI, 2010, xx+527 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Iudelevich V.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).