Arithmetic of certain $\ell$-extensions ramified at three places. III
- Authors: Kuz'min L.V.1
-
Affiliations:
- National Research Centre "Kurchatov Institute"
- Issue: Vol 86, No 6 (2022)
- Pages: 123-142
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133895
- DOI: https://doi.org/10.4213/im9241
- ID: 133895
Cite item
Abstract
Let $\ell$ be a regular odd prime, $K$ the $\ell$ th cyclotomic field and$K=k(\sqrt[\ell]{a} )$, where $a$ is a positive integer. Under theassumption that there are exactly three places ramified in the extension$K_\infty/k_\infty$, we study the $\ell$-component of the class group of thefield $K$. We prove that in the case $\ell>3$ there always is an unramifiedextension $\mathcal{N}/K$ such that $G(\mathcal{N}/K)\cong (\mathbbZ/\ell\mathbb Z)^2$ and all places over $\ell$ split completely in theextension $\mathcal{N}/K$. In the case $\ell=3$ we give a completedescription of the situation. Some other results are obtained.
About the authors
Leonid Viktorovich Kuz'min
National Research Centre "Kurchatov Institute"
Email: helltiapa@mail.ru
Doctor of physico-mathematical sciences
References
- Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 78–99
- Л. В. Кузьмин, “Арифметика некоторых $ell$-расширений с тремя точками ветвления. II”, Изв. РАН. Сер. матем., 85:5 (2021), 132–151
- А. Картан, С. Эйленберг, Гомологическая алгебра, ИЛ, М., 1960, 510 с.
Supplementary files
