Gelfand–Kirillov dimensions of simple modules over twisted group algebras $k \ast A$

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the $n$-dimensional multi-parameter quantum torus algebra $\Lambda_{\mathfrak q}$ over a field $k$ defined by a multiplicativelyantisymmetric matrix $\mathfrak q = (q_{ij})$ we show that, in the case whenthe torsion-free rank of the subgroup of $k^\times$ generated by the $q_{ij}$is large enough, there is a characteristic set of values (possibly with gaps)from $0$ to $n$ that can occur as the Gelfand–Kirillov dimensions of simplemodules. The special case when $\mathrm{K}.\dim(\Lambda_{\mathfrak q}) = n - 1$and $\Lambda_{\mathfrak q}$ is simple, studied in A. Gupta, $\mathrm{GK}$-dimensions of simple modules over $K[X^{\pm 1},\sigma]$, Comm. Algebra, 41(7) (2013), 2593–2597, is considered withoutassuming the simplicity, and it is shown that a dichotomy still holds for theGK dimension of simple modules.

作者简介

Ashish Gupta

Ramakrishna Mission Vivekananda Educational and Research Institute

Email: a0gupt@gmail.com

Umamaheswaran Arunachalam

Harish-Chandra Research Institute

Email: ruthreswaran@gmail.com

参考

  1. Y. Manin, Topics in non-commutative geometry, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1991, viii+164 pp.
  2. C. J. B. Brookes, “Crossed products and finitely presented groups”, J. Group Theory, 3:4 (2000), 433–444
  3. В. А. Артамонов, “Строение модулей над квантовыми полиномами”, УМН, 50:6(306) (1995), 167–168
  4. В. А. Артамонов, “Проективные модули над квантовыми алгебрами полиномов”, Матем. сб., 185:7 (1994), 3–12
  5. В. А. Артамонов, “Неприводимые модули над квантовыми полиномами”, УМН, 51:6(312) (1996), 189–190
  6. В. А. Артамонов, “Модули над квантовыми полиномами”, Матем. заметки, 59:4 (1996), 497–503
  7. В. А. Артамонов, “Квантовая проблема Серра”, УМН, 53:4(322) (1998), 3–76
  8. В. А. Артамонов, “Общие квантовые многочлены: неприводимые модули и Морита-эквивалентность”, Изв. РАН. Сер. матем., 63:5 (1999), 3–36
  9. V. A. Artamonov, “On projective modules over quantum polynomials”, J. Math. Sci. (N.Y.), 93:2 (1999), 135–148
  10. J. Alev, M. Chamarie, “Derivations et automorphismes de quelques algèbres quantiques”, Comm. Algebra, 20:6 (1992), 1787–1802
  11. В. А. Артамонов, “Алгебры квантовых многочленов”, Алгебра – 4, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 26, ВИНИТИ, М., 2002, 5–34
  12. V. A. Artamonov, R. Wisbauer, “Homological properties of quantum polynomials”, Algebr. Represent. Theory, 4:3 (2001), 219–247
  13. K.-H. Neeb, “On the classification of rational quantum tori and the structure of their automorphism groups”, Canad. Math. Bull., 51:2 (2008), 261–282
  14. J. M. Osborn, D. S. Passman, “Derivations of skew polynomial rings”, J. Algebra, 176:2 (1995), 417–448
  15. E. Aljadeff, Y. Ginosar, “On the global dimension of multiplicative Weyl algebras”, Arch. Math. (Basel), 62:5 (1994), 401–407
  16. J. C. McConnell, J. J. Pettit, “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc. (2), 38:1 (1988), 47–55
  17. A. Gupta, “The Krull and global dimension of the tensor product of quantum tori”, J. Algebra Appl., 15:9 (2016), 1650174, 19 pp.
  18. V. A. Artamonov, “Quantum polynomials”, Advances in algebra and combinatorics, World Sci. Publ., Hackensack, NJ, 2008, 19–34
  19. J. C. McConnell, “Quantum groups, filtered rings and Gelfand–Kirillov dimension”, Noncommutative ring theory (Athens, OH, 1989), Lecture Notes in Math., 1448, Springer, Berlin, 1990, 139–147
  20. G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. Math., 22, Rev. ed., Amer. Math. Soc., Providence, RI, 2000, x+212 pp.
  21. J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings, Grad. Stud. Math., 30, Rev. ed., Amer. Math. Soc., Providence, RI, 2001, xx+636 pp.
  22. S. C. Coutinho, A primer of algebraic $D$-modules, London Math. Soc. Stud. Texts, 33, Cambridge Univ. Press, Cambridge, 1995, xii+207 pp.
  23. A. Gupta, A. D. Sarkar, “A dichotomy for the Gelfand–Kirillov dimensions of simple modules over simple differential rings”, Algebr. Represent. Theory, 21:3 (2018), 579–587
  24. J. C. McConnell, “Representations of solvable Lie algebras. V. On the Gelfand–Kirillov dimension of simple modules”, J. Algebra, 76:2 (1982), 489–493
  25. J. T. Stafford, “Non-holonomic modules over Weyl algebras and enveloping algebras”, Invent. Math., 79:3 (1985), 619–638
  26. J. Bernstein, V. Lunts, “On non-holonomic irreducible $D$-modules”, Invent. Math., 94:2 (1988), 223–243
  27. S. C. Coutinho, “On involutive homogeneous varieties and representations of Weyl algebras”, J. Algebra, 227:1 (2000), 195–210
  28. A. Gupta, “GK dimensions of simple modules over $K[X^{pm 1}, sigma]$”, Comm. Algebra, 41:7 (2013), 2593–2597
  29. A. Gupta, “Representations of the $n$-dimensional quantum torus”, Comm. Algebra, 44:7 (2016), 3077–3087
  30. D. S. Passman, The algebraic structure of group rings, Corr. reprint of the 1977 original, R. E. Krieger Publishing Co., Inc., Melbourne, FL, 1985, xiv+734 pp.
  31. C. J. B. Brookes, J. R. J. Groves, “Modules over crossed products of a division ring by a free Abelian group. I”, J. Algebra, 229:1 (2000), 25–54
  32. D. S. Passman, Infinite crossed products, Pure Appl. Math., 135, Academic Press, Inc., Boston, MA, 1989, xii+468 pp.
  33. L. H. Rowen, Graduate algebra: commutative view, Grad. Stud. Math., 73, Amer. Math. Soc., Providence, RI, 2006, xviii+438 pp.
  34. Quanshui Wu, “Gelfand–Kirillov dimension under base field extension”, Israel J. Math., 73:3 (1991), 289–296
  35. L. H. Rowen, Graduate algebra: noncommutative view, Grad. Stud. Math., 91, Amer. Math. Soc., Providence, RI, 2008, xxvi+648 pp.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Gupta A., Arunachalam U., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».