Holomorphically homogeneous CR-manifolds and their model surfaces
- Authors: Stepanova M.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 85, No 3 (2021)
- Pages: 203-209
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133870
- DOI: https://doi.org/10.4213/im9056
- ID: 133870
Cite item
Abstract
We show that the model surface of a germ of a holomorphically homogeneousCR-manifold is holomorphically homogeneous. We also obtain restrictions on the multiplicitiesin the Bloom–Graham type of a germ of a holomorphically homogeneous CR-manifold.
About the authors
Mariya Aleksandrovna Stepanova
Lomonosov Moscow State University, Faculty of Mechanics and Mathematicswithout scientific degree, no status
References
- В. К. Белошапка, “Вещественные подмногообразия комплексного пространства: их полиномиальные модели, автоморфизмы и проблемы классификации”, УМН, 57:1(343) (2002), 3–44
- В. К. Белошапка, “Универсальная модель вещественного подмногообразия”, Матем. заметки, 75:4 (2004), 507–522
- H. Poincare, “Les fonctions analytiques de deux variables et la representation conforme”, Rend. Circ. Mat. Palermo, 23 (1907), 185–220
- V. K. Beloshapka, “$CR$-manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27:2 (2020), 155–174
- T. Bloom, I. Graham, “On ‘type’ conditions for generic real submanifolds of $mathbb C^n$”, Invent. Math., 40:3 (1977), 217–243
- С. С. Чжень, Ю. К. Мозер, “Вещественные гиперповерхности в комплексных многообразиях”, УМН, 38:2(230) (1983), 149–193
Supplementary files
