Subdivision schemes on the dyadic half-line
- Authors: Karapetyants M.A.1
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 84, No 5 (2020)
- Pages: 98-118
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133820
- DOI: https://doi.org/10.4213/im8945
- ID: 133820
Cite item
Abstract
About the authors
Mikhail Alexeyevich Karapetyants
Moscow Institute of Physics and Technology (National Research University)without scientific degree, no status
References
- Б. И. Голубов, Элементы двоичного анализа, 2-е изд., ЛКИ, М., 2007, 208 с.
- Б. И. Голубов, А. В. Ефимов, В. А. Скворцов, Ряды и преобразования Уолша. Теория и применения, Наука, М., 1987, 344 с.
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- G. de Rham, “Sur les courbes limites de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43
- G. M. Chaikin, “An algorithm for high-speed curve generation”, Comput. Graphics and Image Processing, 3:4 (1974), 346–349
- G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- N. Dyn, “Linear and nonlinear subdivision schemes in geometric modeling”, Foundations of computational mathematics (Hong Kong, 2008), London Math. Soc. Lecture Note Ser., 363, Cambridge Univ. Press, Cambridge, 2009, 68–92
- N. Dyn, D. Levin, J. A. Gregory, “A butterfly subdivision scheme for surface interpolation with tension control”, ACM Trans. Graph., 9:2 (1990), 160–169
- M. Marinov, N. Dyn, D. Levin, “Geometrically controlled 4-point interpolatory schemes”, Advances in multiresolution for geometric modelling, Math. Vis., Springer, Berlin, 2005, 301–315
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- D. Colella, C. Heil, “Characterizations of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518
- I. Daubechies, J. C. Lagarias, “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM. J. Math. Anal., 22:5 (1991), 1388–1410
- Е. А. Родионов, Ю. А. Фарков, “Оценки гладкости диадических ортогональных всплесков типа Добеши”, Матем. заметки, 86:3 (2009), 429–444
- G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Proc. Ser. A, 63, Indag. Math. 22 (1960), 379–381
- N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144
- A. A. Melkman, “Subdivision schemes with non-negative masks converge always – unless they obviously cannot?”, Ann. Numer. Math., 4:1-4 (1997), 451–460
- В. Ю. Протасов, “Спектральное разложение 2-блочных тeплицевых матриц и масштабирующие уравнения”, Алгебра и анализ, 18:4 (2006), 127–184
Supplementary files
