Subdivision schemes on the dyadic half-line

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider subdivision schemes, which are used for the approximation of functions and generation of curves on the dyadic half-line.In the classical case of functions on the real line, the theory of subdivision schemes is widely known becauseof its applications in constructive approximation theory and signal processing as well as for generatingfractal curves and surfaces. We define and study subdivision schemes on the dyadic half-line (the positive half-lineendowed with the standard Lebesgue measure and the digit-wise binary addition operation), where the role ofexponentials is played by Walsh functions.We obtain necessary and sufficient conditions for the convergence of subdivision schemes in terms of the spectralproperties of matrices and in terms of the smoothness of solutions of the corresponding refinement equation. We also investigate the problem of convergence of subdivision schemes with non-negative coefficients. We obtain an explicit criterion for theconvergence of algorithms with four coefficients. As an auxiliary result, we define fractal curves on the dyadic half-lineand prove a formula for their smoothness. The paper contains various illustrative examples and numerical results.

About the authors

Mikhail Alexeyevich Karapetyants

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

References

  1. Б. И. Голубов, Элементы двоичного анализа, 2-е изд., ЛКИ, М., 2007, 208 с.
  2. Б. И. Голубов, А. В. Ефимов, В. А. Скворцов, Ряды и преобразования Уолша. Теория и применения, Наука, М., 1987, 344 с.
  3. В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
  4. G. de Rham, “Sur les courbes limites de polygones obtenus par trisection”, Enseign. Math. (2), 5 (1959), 29–43
  5. G. M. Chaikin, “An algorithm for high-speed curve generation”, Comput. Graphics and Image Processing, 3:4 (1974), 346–349
  6. G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68
  7. A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
  8. N. Dyn, “Linear and nonlinear subdivision schemes in geometric modeling”, Foundations of computational mathematics (Hong Kong, 2008), London Math. Soc. Lecture Note Ser., 363, Cambridge Univ. Press, Cambridge, 2009, 68–92
  9. N. Dyn, D. Levin, J. A. Gregory, “A butterfly subdivision scheme for surface interpolation with tension control”, ACM Trans. Graph., 9:2 (1990), 160–169
  10. M. Marinov, N. Dyn, D. Levin, “Geometrically controlled 4-point interpolatory schemes”, Advances in multiresolution for geometric modelling, Math. Vis., Springer, Berlin, 2005, 301–315
  11. И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
  12. D. Colella, C. Heil, “Characterizations of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518
  13. I. Daubechies, J. C. Lagarias, “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM. J. Math. Anal., 22:5 (1991), 1388–1410
  14. Е. А. Родионов, Ю. А. Фарков, “Оценки гладкости диадических ортогональных всплесков типа Добеши”, Матем. заметки, 86:3 (2009), 429–444
  15. G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Proc. Ser. A, 63, Indag. Math. 22 (1960), 379–381
  16. N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002), 73–144
  17. A. A. Melkman, “Subdivision schemes with non-negative masks converge always – unless they obviously cannot?”, Ann. Numer. Math., 4:1-4 (1997), 451–460
  18. В. Ю. Протасов, “Спектральное разложение 2-блочных тeплицевых матриц и масштабирующие уравнения”, Алгебра и анализ, 18:4 (2006), 127–184

Copyright (c) 2020 Karapetyants M.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies