Об $S$-единицах для нормирований второй степени в гиперэллиптических полях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной статье предложен новый эффективный подход к проблеме поиска и построения нетривиальных $S$-единиц гиперэллиптического поля $L$ для множества $S=S_h$, состоящего из двух сопряженных нормирований второй степени. Полученные результаты основаны на глубокой связи между проблемой кручения в якобианах гиперэллиптических кривых и квазипериодичностью непрерывных $h$-дробей – обобщенных функциональных непрерывных дробей специального вида, построенных по нормированию второй степени. Найдены алгоритмы для поиска фундаментальных $S_h$-единиц, сравнимые по эффективности с известными быстрыми алгоритмами для двух линейных нормирований.Библиография: 24 наименования.

Об авторах

Глеб Владимирович Федоров

Московский государственный университет имени М. В. Ломоносова; Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук

Email: glebonyat@mail.ru
кандидат физико-математических наук, старший преподаватель

Список литературы

  1. В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38
  2. W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498
  3. В. П. Платонов, Г. В. Федоров, “О проблеме периодичности непрерывных дробей в гиперэллиптических полях”, Матем. сб., 209:4 (2018), 54–94
  4. В. П. Платонов, М. М. Петрунин, “$S$-единицы в гиперэллиптических полях и периодичность непрерывных дробей”, Докл. РАН, 470:3 (2016), 260–265
  5. В. П. Платонов, Г. В. Федоров, “$S$-единицы и периодичность непрерывных дробей в гиперэллиптических полях”, Докл. РАН, 465:5 (2015), 537–541
  6. В. В. Беняш-Кривец, В. П. Платонов, “Группы $S$-единиц в гиперэллиптических полях и непрерывные дроби”, Матем. сб., 200:11 (2009), 15–44
  7. N. H. Abel, “Ueber die Integration der Differential-Formel $frac{rho dx }{ sqrt{R}}$, wenn $R$ und $rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826:1 (1826), 185–221
  8. P. Tchebichef, “Sur l'integration de la differentielle $frac{x+A}{sqrt{x^4+alpha x^3+beta x^2+gamma x+delta}} dx$”, J. Math. Pures Appl. (2), 9 (1864), 225–241
  9. В. П. Платонов, М. М. Петрунин, “Новые порядки точек кручения в якобианах кривых рода 2 над полем рациональных чисел”, Докл. РАН, 443:6 (2012), 664–667
  10. B. Mazur, “Rational points on modular curves”, Modular functions of one variable, V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148
  11. E. W. Howe, “Genus-2 Jacobians with torsion points of large order”, Bull. Lond. Math. Soc., 47:1 (2015), 127–135
  12. М. М. Петрунин, “Вычисление фундаментальных $S$-единиц в гиперэллиптических полях рода 2 и проблема кручения в якобианах гиперэллиптических кривых”, Чебышевский сб., 16:4 (2015), 250–283
  13. В. П. Платонов, М. М. Петрунин, “Группы $S$-единиц и проблема периодичности непрерывных дробей в гиперэллиптических полях”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Тр. МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 354–376
  14. В. П. Платонов, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях”, Докл. РАН, 474:5 (2017), 540–544
  15. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “Непрерывные дроби в гиперэллиптических полях и представление Мамфорда”, Докл. РАН, 471:6 (2016), 640–644
  16. В. С. Жгун, “Обобщенные якобианы и непрерывные дроби в гиперэллиптических полях”, Чебышевский сб., 18:4 (2017), 209–221
  17. Г. В. Федоров, “Периодические непрерывные дроби и $S$-единицы с нормированиями второй степени в гиперэллиптических полях”, Чебышевский сб., 19:3 (2018), 282–297
  18. С. Ленг, Алгебра, Мир, М., 1968, 564 с.
  19. Д. Мамфорд, Лекции о тета-функциях, Мир, М., 1988, 448 с.
  20. М. М. Петрунин, “$S$-единицы и периодичность квадратного корня в гиперэллиптических полях”, Докл. РАН, 474:2 (2017), 155–158
  21. В. П. Платонов, М. М. Петрунин, “$S$-единицы и периодичность в квадратичных функциональных полях”, УМН, 71:5(431) (2016), 181–182
  22. В. П. Платонов, Г. В. Федоров, “О периодичности непрерывных дробей в эллиптических полях”, Докл. РАН, 475:2 (2017), 133–136
  23. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях над квадратичным полем констант”, Докл. РАН, 482:2 (2018), 137–141
  24. В. П. Платонов, М. М. Петрунин, В. С. Жгун, Ю. Н. Штейников, “О конечности гиперэллиптических полей со специальными свойствами и периодическим разложением $sqrt{f}$”, Докл. РАН, 483:6 (2018), 609–613
  25. G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Федоров Г.В., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».