Rigid divisors on surfaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study effective divisors $D$ on surfaces with $H^0(\mathcal{O}_D)=\Bbbk$and $H^1(\mathcal{O}_D)=H^0(\mathcal{O}_D(D))=0$. We give a numerical criterionfor such divisors, following a general investigation of negativity, rigidity and connectivityproperties. Examples include exceptional loci of rational singularities, and spherelikedivisors.

About the authors

Andreas Hochenegger

Scuola Normale Superiore

PhD, Researcher

David Ploog

University of Stavanger

Doctor of physico-mathematical sciences

References

  1. R. Lazarsfeld, Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004, xviii+387 pp.
  2. Th. Bauer, B. Harbourne, A. L. Knutsen, A. Küronya, S. Müller-Stach, X. Roulleau, T. Szemberg, “Negative curves on algebraic surfaces”, Duke Math. J., 162:10 (2013), 1877–1894
  3. A. Hochenegger, M. Kalck, D. Ploog, “Spherical subcategories in algebraic geometry”, Math. Nachr., 289:11-12 (2016), 1450–1465
  4. У. Фултон, Теория пересечений, Мир, М., 1989, 583 с.
  5. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  6. M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159
  7. D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, Oxford, 2006, viii+307 pp.
  8. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
  9. L. Hille, D. Ploog, “Tilting chains of negative curves on rational surfaces”, Nagoya Math. J., 235 (2019), 26–41
  10. D. Vossieck, “The algebras with discrete derived category”, J. Algebra, 243:1 (2001), 168–176
  11. G. Bobinski, C. Geiss, A. Skowronski, “Classification of discrete derived categories”, Cent. Eur. J. Math., 2:1 (2004), 19–49
  12. L. Hille, D. Ploog, “Exceptional sequences and spherical modules for the Auslander algebra of $k[x]/(x^t)$”, Pacific J. Math., 302:2 (2019), 599–625
  13. A. Hochenegger, M. Kalck, D. Ploog, “Spherical subcategories in representation theory”, Math. Z., 291:1-2 (2019), 113–147
  14. M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math., 84:3 (1962), 485–496
  15. M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136
  16. L. Bădescu, Algebraic surfaces, Transl. from the Romanian, Universitext, Springer-Verlag, New York, 2001, xii+258 pp.
  17. Г. Грауэрт, “О модификациях и исключительных аналитических множествах”, Комплексные пространства, Cб. пер., Мир, М., 1965, 45–104
  18. R. S. Varga, Matrix iterative analysis, Springer Ser. Comput. Math., 27, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2000, x+358 pp.
  19. E. R. Garcia Barroso, P. D. Gonzalez Perez, P. Popescu-Pampu, “Ultrametric spaces of branches on arborescent singularities”, Singularities, algebraic geometry, commutative algebra and related topics, Springer, Cham, 2018, 55–106
  20. A. H. Durfee, “Fifteen characterizations of rational double points and simple critical points”, Enseign. Math. (2), 25:1-2 (1979), 131–163
  21. H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608
  22. A. Nemethi, “Five lectures on normal surface singularities”, Low dimensional topology (Eger, 1996/Budapest, 1998), Bolyai Soc. Math. Stud., 8, Janos Bolyai Math. Soc., Budapest, 1999, 269–351

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Hochenegger A., Ploog D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).