Three plots about Cremona groups
- Authors: Popov V.L.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 83, No 4 (2019)
- Pages: 194-225
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133802
- DOI: https://doi.org/10.4213/im8831
- ID: 133802
Cite item
Abstract
The first group of results of the paper concerns the compressibility offinite subgroups of the Cremona groups. The second concerns the embeddability ofother groups in the Cremona groups and, conversely, of the Cremona groups in othergroups. The third concerns the connectedness of the Cremona groups.
Keywords
About the authors
Vladimir Leonidovich Popov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: popovvl@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
References
- J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Seminaire Bourbaki, Exposes 997–1011, v. 2008/2009, Asterisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000
- J. Blanc, J.-P. Furter, “Topologies and structures of the Cremona groups”, Ann. of Math. (2), 178:3 (2013), 1173–1198
- V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry (Osaka, 2011), World Sci. Publ., Hackensack, NJ, 2013, 213–242
- В. Л. Попов, “Торы в группах Кремоны”, Изв. РАН. Сер. матем., 77:4 (2013), 103–134
- V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568
- В. Л. Попов, “Борелевские подгруппы групп Кремоны”, Матем. заметки, 102:1 (2017), 72–80
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
- V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry (Levico Terme, 2012), Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213
- V. L. Popov, Cremona conference–Basel 2016, Question session, 2016
- J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198
- Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
- C. Birkar, Birational geometry of algebraic varieties, 2018
- S. Cantat, “Morphisms between Cremona groups, and characterization of rational varieties”, Compositio Math., 150:7 (2014), 1107–1124
- J. Blanc, S. Zimmermann, “Topological simplicity of the Cremona groups”, Amer. J. Math., 140:5 (2018), 1297–1309
- J. Blanc, “Groupes de Cremona, connexite et simplicite”, Ann. Sci. Ec. Norm. Super. (4), 43:2 (2010), 357–364
- J. W. Alexander, “On the deformation of an $n$-cell”, Proc. Nat. Acad. Sci. USA, 9:12 (1923), 406–407
- И. Р. Шафаревич, “О некоторых бесконечномерных группах. II”, Изв. АН СССР. Сер. матем., 45:1 (1981), 214–226
- M. Rosenlicht, “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443
- E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
- Э. Б. Винберг, В. Л. Попов, “Теория инвариантов”, Алгебраическая геометрия – 4, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309
- Z. Reichstein, “On the notion of essential dimension for algebraic groups”, Transform. Groups, 5:3 (2000), 265–304
- Z. Reichstein, “Compressions of group actions”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 199–202
- M. Garcia-Armas, “Strongly incompressible curves”, Canad. J. Math., 68:3 (2016), 541–570
- И. Р. Шафаревич, Основы алгебраической геометрии, 3-е изд., МЦНМО, М., 2007, 590 с.
- Б. Л. ван дер Варден, Алгебра, 2-е изд., Наука, М., 1979, 624 с.
- T. A. Springer, “Poincare series of binary polyhedral groups and McKay's correspondence”, Math. Ann., 278:1-4 (1987), 99–116
- N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967
- I. Dolgachev, A. Duncan, “Fixed points of a finite subgroup of the plane Cremona group”, Algebr. Geom., 3:4 (2016), 441–460
- K. A. Nguyen, M. van der Put, J. Top, “Algebraic subgroups of $operatorname{GL}_2(mathbb C)$”, Indag. Math. (N.S.), 19:2 (2008), 287–297
- J. Blanc, Finite Abelian subgroups of the Cremona group of the plane, Ph.D. thèse No. 3777, Univ. Genève, Genève, 2006, 186 pp.
- С. Ленг, Алгебра, Мир, М., 1968, 564 с.
- J. Buhler, Z. Reichstein, “On the essential dimension of a finite group”, Compositio Math., 106:2 (1997), 159–179
- Z. Reichstein, B. Youssin, “Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties”, Canad. J. Math., 52:5 (2000), 1018–1056
- Э. Б. Винберг, Линейные представления групп, Наука, М., 1985, 144 с.
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Yu. Prokhorov, C. Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509
- Ch. Urech, Letter of October 11, 2018 to V. L. Popov, 2018
- J. Blanc, S. Lamy, S. Zimmermann, Quotients of higher dimensional Cremona groups, 2019, 84 pp.
- J. Deserti, “Le groupe de Cremona est hopfien”, C. R. Math. Acad. Sci. Paris, 344:3 (2007), 153–156
- L. N. Mann, J. C. Su, “Actions of elementary $p$-groups on manifolds”, Trans. Amer. Math. Soc., 106 (1963), 115–126
- A. Borisov, Letters of May $1$ and $2$, 2017 to V. L. Popov, 2017
Supplementary files
