Three plots about Cremona groups
- 作者: Popov V.L.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 83, 编号 4 (2019)
- 页面: 194-225
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133802
- DOI: https://doi.org/10.4213/im8831
- ID: 133802
如何引用文章
详细
作者简介
Vladimir Popov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: popovvl@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
参考
- J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Seminaire Bourbaki, Exposes 997–1011, v. 2008/2009, Asterisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000
- J. Blanc, J.-P. Furter, “Topologies and structures of the Cremona groups”, Ann. of Math. (2), 178:3 (2013), 1173–1198
- V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry (Osaka, 2011), World Sci. Publ., Hackensack, NJ, 2013, 213–242
- В. Л. Попов, “Торы в группах Кремоны”, Изв. РАН. Сер. матем., 77:4 (2013), 103–134
- V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568
- В. Л. Попов, “Борелевские подгруппы групп Кремоны”, Матем. заметки, 102:1 (2017), 72–80
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
- V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry (Levico Terme, 2012), Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213
- V. L. Popov, Cremona conference–Basel 2016, Question session, 2016
- J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198
- Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418
- C. Birkar, Birational geometry of algebraic varieties, 2018
- S. Cantat, “Morphisms between Cremona groups, and characterization of rational varieties”, Compositio Math., 150:7 (2014), 1107–1124
- J. Blanc, S. Zimmermann, “Topological simplicity of the Cremona groups”, Amer. J. Math., 140:5 (2018), 1297–1309
- J. Blanc, “Groupes de Cremona, connexite et simplicite”, Ann. Sci. Ec. Norm. Super. (4), 43:2 (2010), 357–364
- J. W. Alexander, “On the deformation of an $n$-cell”, Proc. Nat. Acad. Sci. USA, 9:12 (1923), 406–407
- И. Р. Шафаревич, “О некоторых бесконечномерных группах. II”, Изв. АН СССР. Сер. матем., 45:1 (1981), 214–226
- M. Rosenlicht, “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443
- E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
- Э. Б. Винберг, В. Л. Попов, “Теория инвариантов”, Алгебраическая геометрия – 4, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 55, ВИНИТИ, М., 1989, 137–309
- Z. Reichstein, “On the notion of essential dimension for algebraic groups”, Transform. Groups, 5:3 (2000), 265–304
- Z. Reichstein, “Compressions of group actions”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 199–202
- M. Garcia-Armas, “Strongly incompressible curves”, Canad. J. Math., 68:3 (2016), 541–570
- И. Р. Шафаревич, Основы алгебраической геометрии, 3-е изд., МЦНМО, М., 2007, 590 с.
- Б. Л. ван дер Варден, Алгебра, 2-е изд., Наука, М., 1979, 624 с.
- T. A. Springer, “Poincare series of binary polyhedral groups and McKay's correspondence”, Math. Ann., 278:1-4 (1987), 99–116
- N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967
- I. Dolgachev, A. Duncan, “Fixed points of a finite subgroup of the plane Cremona group”, Algebr. Geom., 3:4 (2016), 441–460
- K. A. Nguyen, M. van der Put, J. Top, “Algebraic subgroups of $operatorname{GL}_2(mathbb C)$”, Indag. Math. (N.S.), 19:2 (2008), 287–297
- J. Blanc, Finite Abelian subgroups of the Cremona group of the plane, Ph.D. thèse No. 3777, Univ. Genève, Genève, 2006, 186 pp.
- С. Ленг, Алгебра, Мир, М., 1968, 564 с.
- J. Buhler, Z. Reichstein, “On the essential dimension of a finite group”, Compositio Math., 106:2 (1997), 159–179
- Z. Reichstein, B. Youssin, “Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties”, Canad. J. Math., 52:5 (2000), 1018–1056
- Э. Б. Винберг, Линейные представления групп, Наука, М., 1985, 144 с.
- V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
- Yu. Prokhorov, C. Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509
- Ch. Urech, Letter of October 11, 2018 to V. L. Popov, 2018
- J. Blanc, S. Lamy, S. Zimmermann, Quotients of higher dimensional Cremona groups, 2019, 84 pp.
- J. Deserti, “Le groupe de Cremona est hopfien”, C. R. Math. Acad. Sci. Paris, 344:3 (2007), 153–156
- L. N. Mann, J. C. Su, “Actions of elementary $p$-groups on manifolds”, Trans. Amer. Math. Soc., 106 (1963), 115–126
- A. Borisov, Letters of May $1$ and $2$, 2017 to V. L. Popov, 2017
补充文件
