On the nonsymplectic involutions of the Hilbert square of a K3 surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We investigate the interplay between the moduli spaces of ample $\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplecticinvolution with invariant lattice of rank one. In particular, wedescribe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper ofBoissière, Cattaneo, Nieper-Wisskirchen, and Sarti.

About the authors

Samuel Boissière

Université de Poitiers

Email: samuel.boissiere@math.univ-poitiers.fr

Andrea Cattaneo

Institut Camille Jordan, Université Claude Bernard Lyon 1

Email: cattaneo@math.univ-lyon1.fr

Dmitri Genrikhovich Markushevich

Université de Lille

Alessandra Sarti

Université de Poitiers

Email: sarti@math.univ-poitiers.fr

References

  1. B. Saint-Donat, “Projective models of $K-3$ surfaces”, Amer. J. Math., 96:4 (1974), 602–639
  2. A. Beauville, “Some remarks on Kähler manifolds with $c_{1}=0$”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, 1–26
  3. A. Beauville, “Varietes Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18:4 (1983), 755–782
  4. V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli spaces of irreducible symplectic manifolds”, Compos. Math., 146:2 (2010), 404–434
  5. O. Debarre, E. Macrì, “On the period map for polarized hyperkähler fourfolds”, Int. Math. Res. Not. IMRN, 2018, rnx333, 37 pp.
  6. S. Boissiere, A. Cattaneo, M. Nieper-Wisskirchen, A. Sarti, “The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface”, K3 surfaces and their moduli, Progr. Math., 315, Birkhäuser/Springer, Cham, 2016, 1–15
  7. E. Markman, “A survey of Torelli and monodromy results for holomorphic-symplectic varieties”, Complex and differential geometry, Springer Proc. Math., 8, Springer, Heidelberg, 2011, 257–322
  8. A. Beauville, “Antisymplectic involutions of holomorphic symplectic manifolds”, J. Topol., 4:2 (2011), 300–304
  9. K. G. O'Grady, “Involutions and linear systems on holomorphic symplectic manifolds”, Geom. Funct. Anal., 15:6 (2005), 1223–1274
  10. E. Markman, “Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a $K3$ surface”, Internat. J. Math., 21:2 (2010), 169–223
  11. E. Markman, “On the monodromy of moduli spaces of sheaves on $K3$ surfaces”, J. Algebraic Geom., 17:1 (2008), 29–99
  12. G. Mongardi, “On natural deformations of symplectic automorphisms of manifolds of $K3^{[n]}$ type”, C. R. Math. Acad. Sci. Paris, 351:13-14 (2013), 561–564
  13. S. Boissière, C. Camere, A. Sarti, “Classification of automorphisms on a deformation family of hyper-Kähler four-folds by $p$-elementary lattices”, Kyoto J. Math., 56:3 (2016), 465–499
  14. A. Cattaneo, Automorphisms of Hilbert schemes of points on a generic projective K3 surface, 2018
  15. C. Camere, G. Kapustka, M. Kapustka, G. Mongardi, “Verra four-folds, twisted sheaves, and the last involution”, Int. Math. Res. Not. IMRN, 2018, rnx327, 50 pp.
  16. V. Gritsenko, K. Hulek, G. K. Sankaran, “Moduli of K3 surfaces and irreducible symplectic manifolds”, Handbook of moduli, v. 1, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013, 459–526
  17. S. Boissière, C. Camere, A. Sarti, “Complex ball quotients from manifolds of $K3^{[n]}$-type”, J. Pure Appl. Algebra, 223:3 (2019), 1123–1138
  18. K. G. O'Grady, “Double covers of EPW-sextics”, Michigan Math. J., 62:1 (2013), 143–184
  19. D. Eisenbud, S. Popescu, C. Walter, “Lagrangian subbundles and codimension 3 subcanonical subschemes”, Duke Math. J., 107:3 (2001), 427–467
  20. K. G. O'Grady, “Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics”, Duke Math. J., 134:1 (2006), 99–137
  21. M. Joumaah, “Non-symplectic involutions of irreducible symplectic manifolds of $K3^{[n]}$-type”, Math. Z., 283:3-4 (2016), 761–790
  22. A. Ferretti, “The Chow ring of double EPW sextics”, Algebra Number Theory, 6:3 (2012), 539–560
  23. D. R. Morrison, “On K3 surfaces with large Picard number”, Invent. Math., 75:1 (1984), 105–121
  24. D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp.
  25. M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159
  26. K. Oguiso, “Isomorphic quartic $K3$ surfaces in the view of Cremona and projective transformations”, Taiwanese J. Math., 21:3 (2017), 671–688
  27. D. Huybrechts, “Compact hyperkähler manifolds: basic results”, Invent. Math., 135:1 (1999), 63–113
  28. G. Bini, “On automorphisms of some K3 surfaces with Picard number two”, Annals of the Marie Curie Fellowship Association, 4 (2005), 1–3
  29. A. Garbagnati, A. Sarti, “Kummer surfaces and K3 surfaces with $(mathbb{Z}/2mathbb{Z})^4$ symplectic action”, Rocky Mountain J. Math., 46:4 (2016), 1141–1205

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Boissière S., Cattaneo A., Markushevich D.G., Sarti A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).