Analysis of the Possibility of Independent Control of Various Plasma Parameters of an RF Non-Self-Sustained Plasma Discharge with Additional Ionization by an Electron Beam

封面

如何引用文章

全文:

详细

This paper presents the study results of an RF non-self-sustained plasma discharge with additional ionization by electron beams. Using a complex experimental-theoretical approach it was shown that the parameters of such plasma differ from those of a conventional RF plasma as well as pure electron beam plasma. The study has confirmed that RF plasma with electron beam ionization can be used to obtain a lower electron temperature than in classical RF plasma and, accordingly, to obtain lower energy ions. RF non-self-sustained discharge plasma parameters can be controlled: plasma density – by varying the RF power at the discharge generation frequency; energy spectra of electrons and ions – by varying the contribution ratio of the RF power, the RF-bias power, and the electron beam power. The result obtained is also promising for the possibility of precision surface treatment with low ion energy plasma used in atomic layer etching and deposition technologies.

作者简介

Maria Bogdanova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: bogdanova.masha91@gmail.com
俄罗斯联邦, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Dmitry Lopaev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: d.lopaev@gmail.com
俄罗斯联邦, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Olga Proshina

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: oproshina@mics.msu.ru
俄罗斯联邦, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Tatyana Rakhimova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: trakhimova@mics.msu.ru
俄罗斯联邦, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Alexander Rakhimov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: arakhimov@mics.msu.ru

Professor

俄罗斯联邦, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

参考

  1. T. Faraz, K. Arts, S. Karwal, H.C.M. Knoops, W.M.M. Kessels Plasma Sources Sci. Technol., 2019, 28(2), 24002. doi: 10.1088/1361-6595/aaf2c7.
  2. S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, Tz.B. Petrova, G.M. Petrov, R.F. Fernsler ECS J. Solid State Sci. Technol., 2015, 4(6), N5033. doi: 10.1149/2.0071506jss.
  3. R.A. Meger, D.D. Blackwell, R.F. Fernsler, M. Lampe, D. Leonhardt, W.M. Manheimer, D.P. Murphy, S.G. Walton Phys. Plasmas, 2001, 8(5), 2558. doi: 10.1063/1.1345506.
  4. D. Leonhardt, C. Muratore, S. G. Walton IEEE Trans. Plasma Sci., 2005, 33(2), 783. doi: 10.1109/TPS.2005.844609.
  5. D.R. Boris, T.B. Petrova, G.M. Petrov, S.G. Walton J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2016, 35(1), 01A104. doi: 10.1116/1.4971416.
  6. S.G. Walton, S.C. Hernández, D.R. Boris, T.B. Petrova, G.M. Petrov J. Phys. D. Appl. Phys., 2017, 50(35), 354001. doi: 10.1088/1361-6463/AA7D12.
  7. D.R. Boris, S.G. Walton J. Vac. Sci. Technol. A, 2018, 36(6), 060601. doi: 10.1116/1.5053615.
  8. D.B. Zolotukhin, V.A. Burdovitsin, E.M. Oks Plasma Sources Sci. Technol., 2015, 25(1), 015001. doi: 10.1088/0963-0252/25/1/015001.
  9. D.B. Zolotukhin, M.I. Lomaev, E.M. Oks, A.V. Tyunkov, Y.G. Yushkov Plasma Sources Sci. Technol., 2019, 28(3), 035018. doi: 10.1088/1361-6595/ab0942.
  10. A.P. Palov, O.V. Proshina, T.V. Rakhimova, A.T. Rakhimov, E.N. Voronina Plasma Process. Polym., 2021, 18(7), 2100007. doi: 10.1002/ppap.202100007.
  11. K.D. Schatz, D.N. Ruzic Plasma Sources Sci. Technol., 1993, 2(2), 100. doi: 10.1088/0963-0252/2/2/005.
  12. M.J. Kushner, W.Z. Collison, D.N. Ruzic J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1996, 14(4), 2094. doi: 10.1116/1.578206.
  13. M.A. Lieberman, A.J. Lichtenberg Principles of Plasma Discharges and Materials Processing, USA, NJ, Hoboken, John Wiley & Sons, Inc., 2005, 757 pp.
  14. C. Charles, A.W. Degeling, T.E. Sheridan, J.H. Harris, M.A. Lieberman, R.W. Boswell Phys. Plasmas, 2000, 7(12), 5232. doi: 10.1063/1.1322557.
  15. M. Bogdanova, D. Lopaev, T. Rakhimova, D. Voloshin, A. Zotovich, S. Zyryanov Plasma Sources Sci. Technol., 2021, 30(7), 075020. doi: 10.1088/1361-6595/abf71b.
  16. A.S. Kovalev, Y.A. Mankelevich, E.A. Muratov, A.T. Rakhimov, N.V. Suetin J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1992, 10(4), 1086. doi: 10.1116/1.578206.
  17. A.I. Zotovich, D.V Lopaev, M.A. Bogdanova, S.M. Zyryanov, A.T. Rakhimov J. Phys. D. Appl. Phys., 2022, 55(31), 315201. doi: 10.1088/1361-6463/ac6712.
  18. R.B. Piejak, J. Al-Kuzee, N.S.J. Braithwaite Plasma Sources Sci. Technol., 2005, 14(4), 734. doi: 10.1088/0963-0252/14/4/012.
  19. T.V. Rakhimova, O.V. Braginsky, V.V. Ivanov, A.S. Kovalev, D.V. Lopaev, Yu.A. Mankelevich, M.A. Olevanov, O.V. Proshina, A.T. Rakhimov, A.N. Vasilieva, D.G. Voloshin IEEE Trans. Plasma Sci., 2007, 35(5), 1229. doi: 10.1109/TPS.2007.905201.
  20. O.V. Proshina, T.V. Rakhimova, A.S. Kovalev, A. Vasilieva, A. Zotovich, S.M. Zyryanov, A.T. Rakhimov Plasma Sources Sci. Technol., 2020, 29(1), 015015. doi: 10.1088/1361-6595/ab5adb.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bogdanova M.A., Lopaev D.V., Proshina O.V., Rakhimova T.V., Rakhimov A.T., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).