Analysis of the Possibility of Independent Control of Various Plasma Parameters of an RF Non-Self-Sustained Plasma Discharge with Additional Ionization by an Electron Beam

Cover Page

Cite item

Full Text

Abstract

This paper presents the study results of an RF non-self-sustained plasma discharge with additional ionization by electron beams. Using a complex experimental-theoretical approach it was shown that the parameters of such plasma differ from those of a conventional RF plasma as well as pure electron beam plasma. The study has confirmed that RF plasma with electron beam ionization can be used to obtain a lower electron temperature than in classical RF plasma and, accordingly, to obtain lower energy ions. RF non-self-sustained discharge plasma parameters can be controlled: plasma density – by varying the RF power at the discharge generation frequency; energy spectra of electrons and ions – by varying the contribution ratio of the RF power, the RF-bias power, and the electron beam power. The result obtained is also promising for the possibility of precision surface treatment with low ion energy plasma used in atomic layer etching and deposition technologies.

About the authors

Maria A. Bogdanova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Author for correspondence.
Email: bogdanova.masha91@gmail.com
Russian Federation, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Dmitry V. Lopaev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: d.lopaev@gmail.com
Russian Federation, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Olga V. Proshina

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: oproshina@mics.msu.ru
Russian Federation, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Tatyana V. Rakhimova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: trakhimova@mics.msu.ru
Russian Federation, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

Alexander T. Rakhimov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: arakhimov@mics.msu.ru

Professor

Russian Federation, 1-2 Leninskie Gory, GSP-1, Moscow, 119991, Russia

References

  1. T. Faraz, K. Arts, S. Karwal, H.C.M. Knoops, W.M.M. Kessels Plasma Sources Sci. Technol., 2019, 28(2), 24002. doi: 10.1088/1361-6595/aaf2c7.
  2. S.G. Walton, D.R. Boris, S.C. Hernandez, E.H. Lock, Tz.B. Petrova, G.M. Petrov, R.F. Fernsler ECS J. Solid State Sci. Technol., 2015, 4(6), N5033. doi: 10.1149/2.0071506jss.
  3. R.A. Meger, D.D. Blackwell, R.F. Fernsler, M. Lampe, D. Leonhardt, W.M. Manheimer, D.P. Murphy, S.G. Walton Phys. Plasmas, 2001, 8(5), 2558. doi: 10.1063/1.1345506.
  4. D. Leonhardt, C. Muratore, S. G. Walton IEEE Trans. Plasma Sci., 2005, 33(2), 783. doi: 10.1109/TPS.2005.844609.
  5. D.R. Boris, T.B. Petrova, G.M. Petrov, S.G. Walton J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 2016, 35(1), 01A104. doi: 10.1116/1.4971416.
  6. S.G. Walton, S.C. Hernández, D.R. Boris, T.B. Petrova, G.M. Petrov J. Phys. D. Appl. Phys., 2017, 50(35), 354001. doi: 10.1088/1361-6463/AA7D12.
  7. D.R. Boris, S.G. Walton J. Vac. Sci. Technol. A, 2018, 36(6), 060601. doi: 10.1116/1.5053615.
  8. D.B. Zolotukhin, V.A. Burdovitsin, E.M. Oks Plasma Sources Sci. Technol., 2015, 25(1), 015001. doi: 10.1088/0963-0252/25/1/015001.
  9. D.B. Zolotukhin, M.I. Lomaev, E.M. Oks, A.V. Tyunkov, Y.G. Yushkov Plasma Sources Sci. Technol., 2019, 28(3), 035018. doi: 10.1088/1361-6595/ab0942.
  10. A.P. Palov, O.V. Proshina, T.V. Rakhimova, A.T. Rakhimov, E.N. Voronina Plasma Process. Polym., 2021, 18(7), 2100007. doi: 10.1002/ppap.202100007.
  11. K.D. Schatz, D.N. Ruzic Plasma Sources Sci. Technol., 1993, 2(2), 100. doi: 10.1088/0963-0252/2/2/005.
  12. M.J. Kushner, W.Z. Collison, D.N. Ruzic J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1996, 14(4), 2094. doi: 10.1116/1.578206.
  13. M.A. Lieberman, A.J. Lichtenberg Principles of Plasma Discharges and Materials Processing, USA, NJ, Hoboken, John Wiley & Sons, Inc., 2005, 757 pp.
  14. C. Charles, A.W. Degeling, T.E. Sheridan, J.H. Harris, M.A. Lieberman, R.W. Boswell Phys. Plasmas, 2000, 7(12), 5232. doi: 10.1063/1.1322557.
  15. M. Bogdanova, D. Lopaev, T. Rakhimova, D. Voloshin, A. Zotovich, S. Zyryanov Plasma Sources Sci. Technol., 2021, 30(7), 075020. doi: 10.1088/1361-6595/abf71b.
  16. A.S. Kovalev, Y.A. Mankelevich, E.A. Muratov, A.T. Rakhimov, N.V. Suetin J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1992, 10(4), 1086. doi: 10.1116/1.578206.
  17. A.I. Zotovich, D.V Lopaev, M.A. Bogdanova, S.M. Zyryanov, A.T. Rakhimov J. Phys. D. Appl. Phys., 2022, 55(31), 315201. doi: 10.1088/1361-6463/ac6712.
  18. R.B. Piejak, J. Al-Kuzee, N.S.J. Braithwaite Plasma Sources Sci. Technol., 2005, 14(4), 734. doi: 10.1088/0963-0252/14/4/012.
  19. T.V. Rakhimova, O.V. Braginsky, V.V. Ivanov, A.S. Kovalev, D.V. Lopaev, Yu.A. Mankelevich, M.A. Olevanov, O.V. Proshina, A.T. Rakhimov, A.N. Vasilieva, D.G. Voloshin IEEE Trans. Plasma Sci., 2007, 35(5), 1229. doi: 10.1109/TPS.2007.905201.
  20. O.V. Proshina, T.V. Rakhimova, A.S. Kovalev, A. Vasilieva, A. Zotovich, S.M. Zyryanov, A.T. Rakhimov Plasma Sources Sci. Technol., 2020, 29(1), 015015. doi: 10.1088/1361-6595/ab5adb.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bogdanova M.A., Lopaev D.V., Proshina O.V., Rakhimova T.V., Rakhimov A.T.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).