Optimization of hard-to-renew resources extraction
- Authors: Kurilova E.V.1, Kulakov M.P.1
-
Affiliations:
- Институт комплексного анализа региональных проблем ДВО РАН
- Issue: Vol 28, No 2 (2025)
- Pages: 24-28
- Section: Mathematical Modeling
- URL: https://journals.rcsi.science/1605-220X/article/view/301526
- DOI: https://doi.org/10.31433/2618-9593-2025-28-2-24-28
- EDN: https://elibrary.ru/ZQTACI
- ID: 301526
Cite item
Full Text
Abstract
Based on a mathematical model of the predator-prey type interacting populations, we have investigated consumption of natural resources in a system with slow recovery of harvested resource. The proposed model incorporates the saturation effect in the predator population, whose reproduction is limited by the volume of available food and the way of its consumption. The focus of the study is on the problem of optimizing predator and prey production. It is shown that there is an optimal withdrawal rate that ensures maximum income with the sustainable development of the community.
Keywords
About the authors
E. V. Kurilova
Институт комплексного анализа региональных проблем ДВО РАН
Author for correspondence.
Email: katkurilova@mail.ru
ORCID iD: 0000-0001-9104-1032
Russian Federation, ул. Шолом-Алейхема 4, г. Биробиджан, 679016
M. P. Kulakov
Институт комплексного анализа региональных проблем ДВО РАН
Email: k_matvey@mail.ru
ORCID iD: 0000-0002-7060-2731
Russian Federation, ул. Шолом-Алейхема 4, г. Биробиджан, 679016
References
- Bazykin A.D. Nelineinaya dinamika vzaimodeistvuyushchikh populyatsii (Nonlinear dynamics of interacting populations). Moscow: Izhevsk: Institute of Computer Research, 2003. 368 p. (In Russ.).
- Woldeab M.S., Rodina L.I. About the methods of renewable resourse extraction from the structured population. Vestnik rossiiskikh universitetov. Matematika, 2022, vol. 27, no. 137, pp. 16–26. (In Russ.). doi: 10.20310/2686-9667-2022-27-137-16-26.
- Kirillov A.N., Ivanova A.S. Method of Tangential Control of “Predator-Prey” System. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2025, vol. 18, no. 1, pp. 15–34. (In Russ.). doi: 10.14529/mmp250102.
- Kurilova E.V., Kulakov M.P., Frisman E.Ya. Modeling the Dynamics of Hard-To-Renew Resources Consumption. Informatika i sistemy upravleniya, 2023, vol. 2, no. 76, pp. 18–32. (In Russ.). doi: 10.22250/18142400_2023_76_2_18.
- Kurilova E.V., Frisman E.Ya. Modeling the Dynamics of Interacting Predator-Prey Populations with Constant Migration of Individuals from Adjacent Territories. Regional’nye problemy, 2024, vol. 27, no. 1, pp. 62–77. (In Russ.). doi: 10.31433/2618-9593-2024-27-1-62-77.
- Neverova G.P., Abakumov A.I., Frisman E.Ya. Dynamic Modes of Exploited Limited Population: Results of Modeling and Numerical Study. Matematicheskaya biologiya i bioinformatika, 2016, vol. 11, no. 1, pp. 1–13. (In Russ.). doi: 10.17537/2016.11.1.
- Revutskaya O.L., Neverova G.P., Frisman E.Ya. Influence of Harvest on the Dynamics of Populations with Age and Sex Structures. Matematicheskaya biologiya i bioinformatika, 2018, vol. 13, no. 1, pp. 270–289. (In Russ.). doi: 10.17537/2018.13.270.
- Frisman E.Ya., Last E.V. Nonlinear Effects on Population Dynamics Related to Age Structure and Fishery Impact. Izvestiya Rossiiskoi akademii nauk. Seriya biologicheskaya, 2005, no. 5, pp. 517–530. (In Russ.). EDN: HTAIGJ.
Supplementary files
