Physical activity as a regulator of myocardial remodeling: from cellular mechanisms to clinical recommendations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiac rehabilitation is an effective method for restoring and improving cardiovascular function in patients with cardiovascular diseases. Rehabilitation exercises not only enhance physical endurance and improve patients’ psycho-emotional state but also play a key role in myocardial remodeling. This article explores the molecular and cellular mechanisms through which physical activity influences cardiac tissue repair, including the regulation of cardiomyocyte apoptosis, angiogenesis, fibrosis, and inflammatory processes. The review analyzes current research data confirming the positive impact of exercise on the morphological and functional state of the heart, as well as the prospects for using rehabilitation training as an adjunctive strategy to optimize myocardial remodeling. Particular attention is given to the role of non-coding RNAs, signaling pathways, and intercellular interactions in these processes. The study also identifies gaps in our understanding of the mechanisms underlying exercise-induced improvements in pathological cardiac remodeling, highlighting the need for further research. The use of modern methods, such as high-throughput sequencing and analysis of individual cells, may open up new perspectives in studying the mechanisms responsible for the beneficial effects of rehabilitation exercises. These technologies make it possible to detail the mechanisms of adaptation of the cardiovascular system to physical activity and identify potential therapeutic targets for the development of new drugs and non-medicinal interventions.

About the authors

Magomed-Emi Kh. Idigov

Rostov State Medical University

Email: maga707q@mail.ru
ORCID iD: 0009-0002-9705-2255

student

Russian Federation, Rostov-on-Don

Sofia G. Shirkhanyan

Rostov State Medical University

Email: goldensofii@gmail.com
ORCID iD: 0009-0007-7991-0515

student

Russian Federation, Rostov-on-Don

Airat R. Galimov

Bashkir State Medical University

Author for correspondence.
Email: galimovajrat457@gmail.com
ORCID iD: 0000-0003-4403-0204
SPIN-code: 8742-4109

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Ufa

Angelina A. Khechumyan

Rostov State Medical University

Email: angelina.koroleva.2016@yandex.ru
ORCID iD: 0009-0006-4262-1712

student

Russian Federation, Rostov-on-Don

Ambartsum O. Khoshafyan

Rostov State Medical University

Email: a-khoshafyan@mail.ru
ORCID iD: 0009-0003-5786-6059

student

Russian Federation, Rostov-on-Don

Gasan V. Pashaev

Rostov State Medical University

Email: pasaevgasan54@gmail.com
ORCID iD: 0009-0003-3014-3555

student

Russian Federation, Rostov-on-Don

Amina A. Mamedkhanova

Rostov State Medical University

Email: amina.mamedkhanova@mail.ru
ORCID iD: 0009-0008-6786-642X

student

Russian Federation, Rostov-on-Don

Mamed S. Mamedov

Rostov State Medical University

Email: Mamedov.939@mail.ru
ORCID iD: 0009-0005-6292-4297

student

Russian Federation, Rostov-on-Don

Anar A. Mamedkhanov

Rostov State Medical University

Email: amamedkhanov.dok@mail.ru
ORCID iD: 0009-0009-3231-4681

student

Russian Federation, Rostov-on-Don

Aisa V. Kankaeva

Rostov State Medical University

Email: kankaeva.a@mail.ru
ORCID iD: 0009-0007-6167-0218

student

Russian Federation, Rostov-on-Don

Aizan M. Susarova

Rostov State Medical University

Email: aizan.mur@gmail.com
ORCID iD: 0009-0000-4924-1532

student

Russian Federation, Rostov-on-Don

Dmitriy V. Minaev

Rostov State Medical University

Email: dima.minaev.2000@bk.ru
ORCID iD: 0009-0007-0079-3409

student

Russian Federation, Rostov-on-Don

Ilya Yu. Levdik

Far Eastern State Medical University

Email: levdik15@mail.ru
ORCID iD: 0009-0007-3642-6213

student

Russian Federation, Khabarovsk

Alena O. Petrova

Samara State Medical University

Email: apetroff01@mail.ru
ORCID iD: 0009-0008-5074-3802

student

Russian Federation, Samara

Magomed V. Aliev

Pavlov First St. Petersburg State Medical University

Email: alievm294@gmail.com
ORCID iD: 0009-0006-1747-6197

student

Russian Federation, St. Petersburg

References

  1. Larina VN, Akhmatova FD, Arakelov SE, et al. Modern strategies for cardiac rehabilitation after myocardial infarction and percutaneous coronary intervention. Kardiologiia. 2020;60(3):111–118. doi: 10.18087/cardio.2020.3.n546
  2. Protasov EА, Velikanov AA. Cardiac rehabilitation today: opportunities and challenges. Russian Family Doctor. 2019;23(1):17–26. doi: 10.17816/RFD2019117-26
  3. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425
  4. Bubnova MG, Aronov DM. Cardiac rehabilitation: stages, principles and international classification of functioning (ICF). Russian Journal of Preventive Medicine. 2020;23(5):40–49. doi: 10.17116/profmed20202305140
  5. Fang J, Ayala C, Luncheon C, et al. Use of Outpatient Cardiac Rehabilitation Among Heart Attack Survivors — 20 States and the District of Columbia, 2013 and Four States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66(33):869–873. doi: 10.15585/mmwr.mm6633a1
  6. Gabrys L, Schmidt C. Prescription and Utilization of Sports Therapy Programs following Cardiac Rehabilitation 2006–2013. Rehabilitation (Stuttg). 2020;59(1):42–47. doi: 10.1055/a-0869-9810
  7. Pomeshkina SA, Bezzubova VA, Zvereva TN, et al. Factors affecting adherence to physical training in the outpatient phase of rehabilitation, in patients after coronary artery bypass grafting. Kardiologiia. 2022;62(6):37–44. doi: 10.18087/cardio.2022.6.n1756
  8. Sushchevich DS, Rudchenko IV, Kachnov VA. The effect of physical exercise on metabolism and remodeling of the cardiovascular system. Science of the young (Eruditio Juvenium). 2020;8(3):433–443. doi: 10.23888/HMJ202083433-443
  9. Baman JR, Sekhon S, Maganti K. Cardiac Rehabilitation. JAMA. 2021;326(4):366. doi: 10.1001/jama.2021.5952
  10. Piercy KL, Troiano RP. Physical Activity Guidelines for Americans From the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11):e005263. doi: 10.1161/CIRCOUTCOMES.118.005263
  11. Zhou MC, Hong Y. Updated essentials of scientific exercise and training in the 6th edition of the guidelines for cardiac rehabilitation programs by American Association of Cardiovascular and Pulmonary Rehabilitation [J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease. 2021;29(6):1–6.
  12. Kakuchaya TT, Dzhitava TG, Pachuashvili NV, et al. Comparative analysis of aerobic cardiorespiratory training of high and moderate intensity in cardiac surgery profile patients. CardioSomatics. 2021;12(4):190–199. doi: 10.17816/22217185.2021.4.201261
  13. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–e646. doi: 10.1161/CIR.0000000000000678
  14. Aronov DM. Methodological issues in the organization and implementation of outpatient rehabilitation exercise programs in patients with different forms of coronary heart disease. CardioSomatics. 2013;4(1):23–28. doi: 10.26442/CS45004
  15. Feito Y, Heinrich KM, Butcher SJ, Poston WSC. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel). 2018;6(3):76. doi: 10.3390/sports6030076
  16. Ribeiro PAB, Boidin M, Juneau M, et al. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives. Ann Phys Rehabil Med. 2017;60(1):50–57. doi: 10.1016/j.rehab.2016.04.004
  17. Kleinnibbelink G, van Dijk APJ, Fornasiero A, et al. Acute exercise-induced changes in cardiac function relates to right ventricular remodeling following 12-wk hypoxic exercise training. J Appl Physiol (1985). 2021;131(2):511–519. doi: 10.1152/japplphysiol.01075.2020
  18. Zhao S, Zu Y, Lu M, Jia X, Chen X. Effect of Tai Chi on cardiac function in patients with myocardial infarction: A protocol for a randomized controlled trial. Medicine (Baltimore). 2021;100(42):e27446. doi: 10.1097/MD.0000000000027446
  19. Mao S, Zhang X, Shao B, et al. Baduanjin Exercise Prevents post-Myocardial Infarction Left Ventricular Remodeling (BE-PREMIER trial): Design and Rationale of a Pragmatic Randomized Controlled Trial. Cardiovasc Drugs Ther. 2016;30(3):315–22. doi: 10.1007/s10557-016-6660-7
  20. Guo Y, Sui JY, Kim K, et al. Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Circulation. 2019;140(22):1820–1833. doi: 10.1161/CIRCULATIONAHA.119.040740
  21. Zhou Q, Deng J, Yao J, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713. doi: 10.1016/j.ebiom.2021.103713
  22. Shi J, Bei Y, Kong X, Liu X, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7(3):664–676. doi: 10.7150/thno.15162
  23. Yu Y, Chen W, Yu M, et al. Exercise-Generated β-Aminoisobutyric Acid (BAIBA) Reduces Cardiomyocyte Metabolic Stress and Apoptosis Caused by Mitochondrial Dysfunction Through the miR-208b/AMPK Pathway. Front Cardiovasc Med. 2022;9:803510. doi: 10.3389/fcvm.2022.803510
  24. Wu X, Wang L, Wang K, et al. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther. 2022;30(1):400–414. doi: 10.1016/j.ymthe.2021.07.004
  25. Gao R, Wang L, Bei Y, et al. Long Noncoding RNA Cardiac Physiological Hypertrophy-Associated Regulator Induces Cardiac Physiological Hypertrophy and Promotes Functional Recovery After Myocardial Ischemia-Reperfusion Injury. Circulation. 2021;144(4):303–317. doi: 10.1161/CIRCULATIONAHA.120.050446
  26. Peixoto TC, Begot I, Bolzan DW, et al. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial. Can J Cardiol. 2015;31(3):308–13. doi: 10.1016/j.cjca.2014.11.014
  27. Bo W, Ma Y, Xi Y, et al. The Roles of FGF21 and ALCAT1 in Aerobic Exercise-Induced Cardioprotection of Postmyocardial Infarction Mice. Oxid Med Cell Longev. 2021;2021:8996482. doi: 10.1155/2021/8996482
  28. Ma Y, Kuang Y, Bo W, et al. Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci. 2021;22(22):12341. doi: 10.3390/ijms222212341
  29. Jia D, Hou L, Lv Y, et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol. 2019;234(12):23705–23718. doi: 10.1002/jcp.28939
  30. Qu X, Du Y, Shu Y, et al. MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium. Sci Rep. 2017;7:42657. doi: 10.1038/srep42657
  31. Zhang JC, Xia L, Jiang Y, et al. Effect of lncRNA GAS5 on rats with acute myocardial infarction through regulating miR-21. Eur Rev Med Pharmacol Sci. 2019;23(19):8573–8579. doi: 10.26355/eurrev_201910_19173
  32. Farsangi SJ, Rostamzadeh F, Sheikholeslami M, et al. Modulation of the Expression of Long Non-Coding RNAs H19, GAS5, and MIAT by Endurance Exercise in the Hearts of Rats with Myocardial Infarction. Cardiovasc Toxicol. 2021;21(2):162–168. doi: 10.1007/s12012-020-09607-0
  33. Song W, Liang Q, Cai M, Tian Z. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med. 2020;24(22):12970–12979. doi: 10.1111/jcmm.15892
  34. Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–603. doi: 10.1016/j.jshs.2020.11.010
  35. Cai MX, Shi XC, Chen T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016;149:1–9. doi: 10.1016/j.lfs.2016.02.055
  36. Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends. 2020;14(2):115–122. doi: 10.5582/bst.2019.01351
  37. Xia WH, Li J, Su C, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell. 2012;11(1):111–9. doi: 10.1111/j.1474-9726.2011.00758.x.
  38. Wang B, Zhou R, Wang Y, et al. Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomed Pharmacother. 2020;131:110690. doi: 10.1016/j.biopha.2020.110690
  39. Souza LM, Okoshi MP, Gomes MJ, et al. Effects of Late Aerobic Exercise on Cardiac Remodeling of Rats with Small-Sized Myocardial Infarction. Arq Bras Cardiol. 2021;116(4):784–792. doi: 10.36660/abc.20190813
  40. Liao Z, Li D, Chen Y, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J Cell Mol Med. 2019;23(12):8328–8342. doi: 10.1111/jcmm.14710
  41. Guizoni DM, Oliveira-Junior SA, Noor SL, et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol. 2016;221:406–12. doi: 10.1016/j.ijcard.2016.07.072
  42. Marcin T, Trachsel LD, Dysli M, et al. Effect of self-tailored high-intensity interval training versus moderate-intensity continuous exercise on cardiorespiratory fitness after myocardial infarction: A randomised controlled trial. Ann Phys Rehabil Med. 2022;65(1):101490. doi: 10.1016/j.rehab.2021.101490
  43. Cai M, Wang L, Ren YL. Effect of exercise training on left ventricular remodeling in patients with myocardial infarction and possible mechanisms. World J Clin Cases. 2021;9(22):6308–6318. doi: 10.12998/wjcc.v9.i22.6308
  44. Trachsel LD, David LP, Gayda M, et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clin Cardiol. 2019;42(12):1222–1231. doi: 10.1002/clc.23277
  45. Jayo-Montoya JA, Jurio-Iriarte B, Aispuru GR, et al. Chronotropic Responses to Exercise and Recovery in Myocardial Infarction Patients Taking β-Blockers Following Aerobic High-Intensity Interval Training: an interfarct study. J Cardiopulm Rehabil Prev. 2022;42(1):22–27. doi: 10.1097/HCR.0000000000000607
  46. Khadanga S, Savage PD, Pecha A, et al. Optimizing Training Response for Women in Cardiac Rehabilitation: A Randomized Clinical Trial. JAMA Cardiol. 2022;7(2):215–218. doi: 10.1001/jamacardio.2021.4822
  47. Yakut H, Dursun H, Felekoğlu E, et al. Effect of home-based high-intensity interval training versus moderate-intensity continuous training in patients with myocardial infarction: a randomized controlled trial. Ir J Med Sci. 2022;191(6):2539–2548. doi: 10.1007/s11845-021-02867-x
  48. Dor-Haim H, Horowitz M, Yaakobi E, et al. Intermittent aerobic-resistance interval training versus continues aerobic training: Improvement in cardiac electrophysiologic and anthropometric measures in male patients post myocadiac infarction, a randomized control trial. PLoS One. 2022;17(5):e0267888. doi: 10.1371/journal.pone.0267888
  49. Eser P, Jaeger E, Marcin T, et al. Acute and chronic effects of high-intensity interval and moderate-intensity continuous exercise on heart rate and its variability after recent myocardial infarction: A randomized controlled trial. Ann Phys Rehabil Med. 2022;65(1):101444. doi: 10.1016/j.rehab.2020.09.008
  50. Kollet DP, Marenco AB, Bellé NL, et al. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: a randomized pilot study. BMC Cardiovasc Disord. 2021;21(1):101. doi: 10.1186/s12872-021-01849-2
  51. Jiang M, Hua M, Zhang X, et al. Effect analysis of kinetic energy progressive exercise in patients with acute myocardial infarction after percutaneous coronary intervention: a randomized trial. Ann Palliat Med. 2021;10(7):7823–7831. doi: 10.21037/apm-21-1478
  52. Grabara M, Nowak Z, Nowak A. Effects of Hatha Yoga on Cardiac Hemodynamic Parameters and Physical Capacity in Cardiac Rehabilitation Patients. J Cardiopulm Rehabil Prev. 2020;40(4):263–267. doi: 10.1097/HCR.0000000000000503
  53. McGregor G, Gaze D, Oxborough D, et al. Reverse left ventricular remodeling: effect of cardiac rehabilitation exercise training in myocardial infarction patients with preserved ejection fraction. Eur J Phys Rehabil Med. 2016;52(3):370–8.
  54. Giallauria F, Cirillo P, D’agostino M, et al. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Card Fail. 2011;17(2):108–14. doi: 10.1016/j.cardfail.2010.09.001
  55. Kubo N, Ohmura N, Nakada I, et al. Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction. Am Heart J. 2004;147(1):113–20. doi: 10.1016/s0002-8703(03)00521-0
  56. Chambers J. Aortic stenosis. BMJ. 2005;330(7495):801–2. doi: 10.1136/bmj.330.7495.801
  57. Yap SC, Takkenberg JJ, Witsenburg M, et al. Aortic stenosis at young adult age. Expert Rev Cardiovasc Ther. 2005;3(6):1087–98. doi: 10.1586/14779072.3.6.1087
  58. Zeppilli P, Bianco M, Bria S, Palmieri V. Bicuspid aortic valve: an innocent finding or a potentially life-threatening anomaly whose complications may be elicited by sports activity? J Cardiovasc Med (Hagerstown). 2006;7(4):282–7. doi: 10.2459/01.JCM.0000219322.04881.9e
  59. Scharhag J, Meyer T, Kindermann I, et al. Bicuspid aortic valve: evaluation of the ability to participate in competitive sports: case reports of two soccer players. Clin Res Cardiol. 2006;95(4):228–34. doi: 10.1007/s00392-006-0359-x
  60. Schultz RL, Swallow JG, Waters RP, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50(2):410–6. doi: 10.1161/HYPERTENSIONAHA.106.086371
  61. Kandilova VN. Heart and vessel remodeling in different age groups of patients with arterial hypertension. Eurasian heart journal. 2019;(4):86–96. doi: 10.38109/2225-1685-2019-4-86-96
  62. Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci. 2019;4(3):449–467. doi: 10.1016/j.jacbts.2019.02.006
  63. Lim SL, Lam CS, Segers VF, et al. Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J. 2015;36(31):2050–2060. doi: 10.1093/eurheartj/ehv132
  64. Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med. 2022;9:896782. doi: 10.3389/fcvm.2022.896782
  65. Su SA, Xie Y, Fu Z, et al. Emerging role of exosome-mediated intercellular communication in vascular remodeling. Oncotarget. 2017;8(15):25700–25712. doi: 10.18632/oncotarget.14878
  66. Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3):393–407. doi: 10.1016/j.cell.2018.01.011
  67. Ponnusamy M, Liu F, Zhang YH, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139(23):2668–2684. doi: 10.1161/CIRCULATIONAHA.118.035832
  68. Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation. 2019;139(4):518–532. doi: 10.1161/CIRCULATIONAHA.118.033794
  69. Zhang T, Zhang Y, Cui M, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175–82. doi: 10.1038/nm.4017
  70. Ghardashi Afousi A, Gaeini A, Rakhshan K, et al. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal. 2019;13(2):255–267. doi: 10.1007/s12079-018-0481-3
  71. Radugin FM, Timkina NV, Karonova TL. Metabolic properties of irisin in health and in diabetes mellitus. Obesity and metabolism. 2022;19(3):332–339. doi: 10.14341/omet12899
  72. Hassaan PS, Nassar SZ, Issa Y, Zahran N. Irisin vs. Treadmill Exercise in Post Myocardial Infarction Cardiac Rehabilitation in Rats. Arch Med Res. 2019;50(2):44–54. doi: 10.1016/j.arcmed.2019.05.009
  73. Lee SE, Nguyen C, Yoon J, et al. Three-dimensional Cardiomyocytes Structure Revealed By Diffusion Tensor Imaging and Its Validation Using a Tissue-Clearing Technique. Sci Rep. 2018;8(1):6640. doi: 10.1038/s41598-018-24622-6
  74. Eder RA, van den Boomen M, Yurista SR, et al. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol. 2022;5(1):656. doi: 10.1038/s42003-022-03635-y. Erratum in: Commun Biol. 2022;5(1):696. doi: 10.1038/s42003-022-03671-8.
  75. Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. Adv Exp Med Biol. 2017;999:117–136. doi: 10.1007/978-981-10-4307-9_8
  76. Davis J, Burr AR, Davis GF, et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012;23(4):705–15. doi: 10.1016/j.devcel.2012.08.017
  77. Fernandes T, Baraúna VG, Negrão CE, et al. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4):H543–52. doi: 10.1152/ajpheart.00899.2014
  78. Opstad TB, Seljeflot I, Bøhmer E, et al. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology. 2018;139(1):17–24. doi: 10.1159/000481684
  79. Brianezi L, Ornelas E, Gehrke FS, et al. Effects of Physical Training on the Myocardium of Oxariectomized LDLr Knockout Mice: MMP 2/9, Collagen I/III, Inflammation and Oxidative Stress. Arq Bras Cardiol. 2020;114(1):100–105. doi: 10.5935/abc.20190223
  80. Lighthouse JK, Burke RM, Velasquez LS, et al. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight. 2019;4(1):e92098. doi: 10.1172/jci.insight.92098
  81. Cai Y, Xie KL, Zheng F, Liu SX. Aerobic Exercise Prevents Insulin Resistance Through the Regulation of miR-492/Resistin Axis in Aortic Endothelium. J Cardiovasc Transl Res. 2018;11(6):450–458. doi: 10.1007/s12265-018-9828-7
  82. Donghui T, Shuang B, Xulong L, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86–91. doi: 10.1016/j.mvr.2018.10.009
  83. Ouchi N, Oshima Y, Ohashi K, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283(47):32802–11. doi: 10.1074/jbc.M803440200
  84. Xi Y, Hao M, Liang Q, et al. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A-Smad2/3 in rats following myocardial infarction. J Sport Health Sci. 2021;10(5):594–603. doi: 10.1016/j.jshs.2020.11.010
  85. Pourheydar B, Biabanghard A, Azari R, et al. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-b protein levels in myocardiocytes. J Cardiovasc Thorac Res. 2020;12(2):129–135. doi: 10.34172/jcvtr.2020.21
  86. Chen J, Gu S, Song Y, et al. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc Disord. 2021;21(1):524. doi: 10.1186/s12872-021-02327-5
  87. Li WD, Zhou DM, Sun LL, et al. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells. 2018;36(12):1863–1874. doi: 10.1002/stem.2904
  88. Soori R, Amini AA, Choobineh S, et al. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch Physiol Biochem. 2022;128(1):1–6. doi: 10.1080/13813455.2019.1660370
  89. Jin K, Gao S, Yang P, et al. Single-Cell RNA Sequencing Reveals the Temporal Diversity and Dynamics of Cardiac Immunity after Myocardial Infarction. Small Methods. 2022;6(3):e2100752. doi: 10.1002/smtd.202100752
  90. Zhang QL, Wang W, Jiang Y, et al. GRGM-13 comprising 13 plant and animal products, inhibited oxidative stress induced apoptosis in retinal ganglion cells by inhibiting P2RX7/p38 MAPK signaling pathway. Biomed Pharmacother. 2018;101:494–500. doi: 10.1016/j.biopha.2018.02.107
  91. Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722–1740. doi: 10.1161/CIRCRESAHA
  92. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 2017;18(8):861–869. doi: 10.1038/ni.3772
  93. Stachon P, Heidenreich A, Merz J, et al. P2X7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation. 2017;135(25):2524–2533. doi: 10.1161/CIRCULATIONAHA.117.027400
  94. Chen X, Li H, Wang K, et al. Aerobic Exercise Ameliorates Myocardial Inflammation, Fibrosis and Apoptosis in High-Fat-Diet Rats by Inhibiting P2X7 Purinergic Receptors. Front Physiol. 2019;10:1286. doi: 10.3389/fphys.2019.01286
  95. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985). 2017;122(5):1077–1087. doi: 10.1152/japplphysiol.00622.2016
  96. Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol. 2020;135:106790. doi: 10.1016/j.vph.2020.106790
  97. Bei Y, Xu T, Lv D, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112(4):38. doi: 10.1007/s00395-017-0628-z
  98. Yin A, Yuan R, Xiao Q, et al. Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine. 2022;82:104164. doi: 10.1016/j.ebiom.2022.104164

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study search algorithm.

Download (254KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».