Choreographies in the n-vortex Problem
- Авторы: Calleja R.C.1, Doedel E.J.2, García-Azpeitia C.3
-
Учреждения:
- IIMAS
- Concordia University
- Facultad de Ciencias
- Выпуск: Том 23, № 5 (2018)
- Страницы: 595-612
- Раздел: Article
- URL: https://journals.rcsi.science/1560-3547/article/view/219073
- DOI: https://doi.org/10.1134/S156035471805009X
- ID: 219073
Цитировать
Аннотация
We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.
Ключевые слова
Об авторах
Renato Calleja
IIMAS
Автор, ответственный за переписку.
Email: calleja@mym.iimas.unam.mx
Мексика, Apdo. Postal 20–726, C.P., México, D.F., 01000
Eusebius Doedel
Concordia University
Email: calleja@mym.iimas.unam.mx
Канада, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8
Carlos García-Azpeitia
Facultad de Ciencias
Email: calleja@mym.iimas.unam.mx
Мексика, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX
Дополнительные файлы
