Choreographies in the n-vortex Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.

Негізгі сөздер

Авторлар туралы

Renato Calleja

IIMAS

Хат алмасуға жауапты Автор.
Email: calleja@mym.iimas.unam.mx
Мексика, Apdo. Postal 20–726, C.P., México, D.F., 01000

Eusebius Doedel

Concordia University

Email: calleja@mym.iimas.unam.mx
Канада, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8

Carlos García-Azpeitia

Facultad de Ciencias

Email: calleja@mym.iimas.unam.mx
Мексика, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018